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Abstract

A force reflecting hand controller based upon a six degree of freedom fully parallel

mechanism often termed a Stewart Platform has been designed constructed and tested as an

integrated system with a slave robot manipulator test bed. A force reflecting hand controller

comprises a kinesthetic device capable of transmitting position and orientation commands to

a slave robot manipulator while simultaneously representing the environmental interaction

forces of the slave manipulator back to the operator through actuators driving the hand

controller mechanism. The Stewart Platform was chosen as a novel approach to improve

force reflecting teleoperation because of its inherently high ratio of load generation capability

to system mass content and the correspondingly high dynamic bandwidth. An additional

novelty of the program was to implement closed loop force and torque control about the

hand controller mechanism by equipping the handgrip with a six degree of freedom force

and torque measuring cell. The mechanical, electrical, computer and control systems are

discussed and system tests are presented.
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Chapter 1

Introduction and Program

Synopsis

This final report documents a Small Business Innovation Research (SBIR) Phase II program

to develop a hardware testbed of a novel approach to a force reflecting hand controller for

manipulator teleoperation. This report covers research from July 1989 to July 1991. The

Phase I program ran from March 1988 to August 1988.

1.1 Technical Background and Program Motivation

This research falls within the general realm of manipulator teleoperation and the human

machine interface. A manipulator is a mechanical motion generating device. Manipulator

teleoperation can be defined as the command and control of the manipulator from a dis-

tance or position far removed from the manipulator. In particular we are interested in the

manipulator end effector when viewed as a rigid body independent of any grippers or fingers

mounted on the end effector. In this context, the commands can take the form of position

and orientation (pose), force and torque, or combinations of the above.

The questions arise as to the method of command formulation for the manipulator

and the means by which the human operator expresses his command intentions to the

manipulator system. This means is referred to as the man machine interface. Humans
are endowed with five senses as delineated in Table 1.1. The sense of touch is subdivided

into the tactile and kinesthetic capabilities. The tactile sense embodies pressure and heat

discrimination, while the kinesthetic sense embodies the knowledge of the position of body

parts from nerves in the musculature. Humans have the additional capability of speech

which can justifiably be classified under the tactile or kinesthetic sense since speech is

modulated through pressure or muscle tension sensing in the vocal cords. In the table,

senses are classified according to input and output capability relative to the human. The



Sense Manifestations Input Output Degrees of

Capability Capability Freedom

Touch - Kinesthetic Hand Pose Yes Yes 6

Touch -Tactile FingertipContact Yes Yes 1 per digit

Touch - Kinesthetic Retina Orientation No "'Yes 2

Touch - Kinesthetic Speech No Yes Multiple

Yes NoSight
Taste

Viewin__
Tasting

Hearing

Yes

Hearing

No

Multiple

Multiple

Smell Smelling Yes No Multiple

Yes No Multiple

Table 1.1: Human Sensor Capabilities

output capability is necessary to formulate commands to the manipulator. The input ca-

pability can be used strategically to provide the operator the necessary information to

formulate command decisions.

Of the eight sensing manifestations cited in the table, only the first four are candidates

for manipulator command formulation. The first entry, hand pose, has the most immediate

usefulness to the teleoperation problem since it is bilateral and works in six degrees of

freedom (DOF). Fingertip touch is also useful, for example in typing numerical pose entries

on a keyboard or working with a touchscreen or robot teach pendant. For sophisticated

applications with multiple DOF, fingertip touch breaks down due to the inherent slow speed

of formulating commands with individual finger strokes. Retinal tracking has capabilities

for command formulation, however it is limited to two DOF. Voice has potential for flexible

command formulation, however it is also slow and limited by the human time to express his

commands vocally, and the time associated with a computer interpreting the speech image.

The last four entries have no capability for command formulation and are included only for

the benefit of demonstrating a complete argument.

Excluding direct computer interpretation of human thought or brain waves, the pose

of the operator's hand represents the ultimate method through which the human can ex-

press the desired pose and environmental interaction forces to a manipulator. A one to one

correspondence exists between the six DOF pose of the hand and that of the manipulator

end effector. The human need not translate his desire into words or key strokes which in

turn must be mapped back to pose coordinates by the computer controlling the manipu-

lator. The kinesthetic sense or eye hand coordination is highly developed in humans. A

baseball player hardly considers the path coordinates of the bat while striking the ball.

Rather he concentrates on the target ball path, and the muscles respond accordingly as if

preprogrammed. Accessing the kinesthetic sense of the hand is therefore highly desirable

for commanding manipulators.

Now consider the problem of detecting the pose of the operator's hand. Two basic



methods are available, isometric and large motion range devices. The isometric devices

constrain the hand and sense only small motion deviations from center through the me-

chanical displacement of the constraining structure and a suitable displacement transducer.

These devices necessarily saturate the input portion of the hand pose comprising the oper-

ator's ability to sense forces and torques through his hand. The large motion range device

conversely requires passive sensing of the hand pose.

The sensing can directly or indirectly measure the hand pose. In the direct case the

transducing options include electromagnetic such as laser reflection or capacitive probes,

or acoustic. These approaches often suffer in accuracy and generally do not allow the

possibility for force feedback to the operator. It is conceivable that the operator could

grasp an electric or magnetic dipole which could interact with a corresponding capacitive

or inductive grid to simultaneously sense and drive the dipole. However this would require

a very high resolution switching grid, consume a large amount of electric power, and create

enormous amounts of electromagnetic noise in sensitive environments. As a closure to

the direct measurement approach, one should consider the interesting but distant future

possibility of directly measuring the hand pose while simultaneously creating the illusion of

force in the operators hand through some sophisticated form of neural stimulation.

The indirectmeasurement means requiresthat the operatorgrasp a mechanicallinkage

equipped with passivepositiontransducersatthe mechanicaljoints.The mechanicallinkage

allowsthe opportunitytoincorporateactuatorswhich can be driventoproduce an arbitrary

forceand torque stateat the operator'shand. Such a deviceistermed a forcereflecting

hand controllerand representsthe objectof thisresearchprogram. Force feedbackishighly

desirablein teleoperationapplicationsand has been shown to dramaticallyreduce task

completion times [MI].

The force reflecting hand controller has the advantages of allowing pose sensing and

force feedback. It has the disadvantage of introducing mass into the system. Mass has
the undesirable attributes of inertia and friction forces, both of which can be mistaken by

the operator as forces experienced by the manipulator while interacting with the environ-

ment. Additionally, mass introduces gravitational forces which must be compensated by
the actuators.

The forcereflectinghand controllerhas applicationin both teachingmanipulator mo-

tions_hich can be played back at a latertime and in direct"on line"continuousteleop-

eration.The need forteleoperationhas been attackedwith the argument that supervisory

controlis the optimum method for manipulator control. Under supervisorycontrol,a

multitudeof manipulation tasksare preprogrammed. The operator accomplisheshis work

assignment by merelyselectingthe appropriateprogram atthe appropriatetime. This argu-

ment iscounteredby the notionof the impossibilityofaccuratelypredictingeverypossible

manipulation task,and the need forflexibilitywhen accidentsand the likehave altered

the previouslyhighlystructuredenvironment. Supervisorycontrolincursthe expense of

painstakinglystructuringthe environment. At a minimum, the forcereflectinghand con-

trollercan be veryusefullyemployed indevelopingprograms forsupervisorycontrol.At the

maximum, itoffersextreme flexibilityto respond to dynamically changing environments.

3



Manipulator teleoperation has the most immediate application in manipulator teaching,

and in space, undersea, radioactive and chemically toxic environments which represent dan-

gers to human well being. Programming manipulators represents a significant cost barrier

to their application to industrial manufacturing environments. The United States, Euro-

pean, and Japanese ambitions to construct permanently manned space stations will require

manipulators for construction and maintenance. The United States is actively beginning

the remediation of the chemical and nuclear wastes associated with fifty years of weapon

manufacture. Eastern Europe is known to have massive industrial waste zones requiring

remediation. All these applications make teleoperation a very worthy candidate for research
investment.

1.2 Current Systems and Research Initiatives

In discussing the research initiatives, it is appropriate to first discuss the currently available

systems. To the best of the author's knowledge, two isometric input devices are available on

the open market. The first is offered by Norwalk Systems, located in Norwalk, Connecticut.

The second was designed by Dr. Gerhard Herzinger under the auspices of DLR [HI]. Both

devices feature six DOF command capability through strain gauge sensing.

Two kinesthetic devices have been developed. The first by the Jet Propulsion Laboratory

[B1] features an electric, direct current, cable driven, six axis mechanism with the kinematic

structure depicted in Figure 1.1. The second device is manufactured by Kraft Robotics and

features alternating current electric motors with gearing and an all revolute joint kinematic

structure with six DOF depicted in Figure 1.2.

Both of these devices occupy large volumes of space. Speaking qualitatively, the JPL

device has a very smooth feel. The JPL device balances gravitational forces by incorporating

an elaborate set of moving masses at the expense of additional inertia content and the

potential for mechanical vibration modes associated with these masses. The Kraft robotics

device incorporates large gear reductions at each joint and therefore develops a very large

inertia with respect to the handgrip such that the system approaches non backdriveablility

with respect to the handgrip. The large forces associated with accelerating the mass content

of the motors can be confused by the operator with forces experienced by the manipulator

and therefore degradates the fidelity of the force feedback.

This program introduced two primary research initiatives:

The force reflecting hand controller mechanism would utilize a fully parallel six DOF

mechanism commonly referred to as the "Stewart Platform," [$1] shown in Figure 1.3,

The hand controller mechanism would be equipped with a six DOF force/torque

sensing cell in the handgrip to provide closed loop feedback around the hand controller
mechanism.



2 6

_4

Figure 1.1: Kinematic Structure of the JPL Hand Controller

5 2 1

Figure 1.2: Kinematic Structure of the Kraft Robotics Hand Controller
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Figure 1.3: Stewart Platform Generic Kinematic Layout

The program plan provided for the design, construction and test of the Stewart Platform

based force reflecting hand controller as an isolated subsystem in a bilateral teleoperator

system. The program further provided that the system be integrated through a universal

interface developed under the program with a slave robot manipulator for system level

testing.

The research initiatives were introduced to realize the following objectives characteristic

to space teleoperation:

• A force reflecting hand controller of small volume to function effectively in the re-

stricted confines of a space vehicle,

• A force reflecting hand controller which could be "broken down" when not in use and

stowed conveniently,

• A force reflecting hand controller with minimum mass therefore being a more worthy

candidate for space flight,

Additionally as pure research objectives not directly related to space development, the

following were put forward:

• A force reflecting hand controller having extremely high dynamic bandwidth and force

feedback fidelity,

6



• A robotic mechanism having extremely high load generating capability to mass content

ratio,

• Design methodologies for Stewart Platform mechanism realizations,

• Analysis of and empirical findings for the performance limitations of Stewart Platform

mechanism,

The StewartPlatform mechanism and thecontrolarchitecturearediscussedingreatdetailin

followingreportchapters.In general,the Stewart Platform isassociatedwith the objectives

pertainingto a smaller,lighterhand controllermechanism. By contrastwith the JPL and

Kraft devices,the Stewart Platform distributesloadsacrossallactuatorsas opposed to the

former mechanisms which isolateand sum loads into actuatorsthrough the cantilevered

architecture.The forcesensingcellin the handgrip isgenerallyassociatedwith the higher

dynamic bandwidth.

1.3 Theoretical Considerations, Performance Requirements

and Design Philosophy

This program represented the first attempt to realize a Stewart Platform based force re-

flecting hand controller. No previous system existed upon which to develop a rigorous set of

performance requirements. However previous research in the general field delineates a clear

set of theoretical considerations, and suggests a general set of performance requirements.

Given the unconventional nature of the work, it became necessary to supplement rigorous

performance standards with an intuitive design philosophy.

The following theoretical considerations are cited with respect to the force reflecting

hand controller and bilateral teleoperation:

Mobility: Mobility is defined as the number of DOF of the hand controller handgrip.

Update Rate: The update rate represents the frequency with which the controlling

computer can communicate the data and write new commands to the servo motors

on both master and slave. This has a significant effect on system stability and force

feedback fidelity.

Time Delay: The time delay is closely related to the update rate. It represents the
amount of time associated with the unilateral transmission of information from either

hand controller to slave manipulator or from slave manipulator to the hand controller.

Significant time delays can cause operator disorientation.

Force Feedback Fidelity: This refers to the accuracy and amount of distortion with

which the hand controller represents the force information to the operator. The fre-

quency content of the force feedback is thought to be a significant parameter.

7



Translational Volume

Incremental Translation

Orientationai Range

300 mm (12 in.)cube

0.5mm (.02in)

See Figure1.4 [K1]

Force Feedback Range 0.5-15N (I-30Ibf)

IncrementM Force 5% of Applied Force

Torque Feedback Range 0.013-0.69Nm (0.1-5footpounds)

IncrementalTorque 5% of Applied Torque

Force Feedback Frequency Content LessThan 0.64Hz

Time Delay Less Than 0.1 sec.

Mechanism Friction Minimum; Less Than 0.25 N (0.5 lbf)

Update Rate Greater Than 50 Hz.

Table 1.2: System Design Parameters

Cross Coupling: In the context of teleoperation, cross coupling refers to the inability

of the human to exactly discriminate between rotations and translations or corre-

spondingly between forces and torques. It arises primarily from the human inability

to exactly perceive the center of the hand controller mechanism. For example, if the

operator grasps the handgrip such that the center of the operator's hand and that of

the hand controller do not coincide, then a pure force generated by the hand controller

through its center will require the operator to generate a balancing force and torque

which will lead the operator to believe that the slave manipulator is experiencing a

torque loading. The common approach to alleviating this difficulty is to partition the

system through software into a translational and rotational operational modes.

Given the above definition of some of the theoretical considerations, we now wish to

assign quantitative design parameters to them and the other general design parameters.

The design parameters are displayed in Table 1.2.

The translational volume specification is very subjective and varies largely with the space

constraints imposed upon the mechanism. The orientational range of motion is taken from

the human wrist capability. Almost all robot manipulators have a wrist rotational motion

greater than that of the wrist requiring some rereferencing technique. The incremental

motions relate to the human capability to create small motions and indicate the resolution

required of the sensing system. The force and torque feedback ranges are also somewhat

arbitrary depending upon the application. In space applications the magnitudes must be

kept small due to the inability of the astronaut to generate counterbalancing forces. The

frequency content limitation stems from a fundamental human limitation to track and

respond to high frequencies [M2,M3]. The notion here is that if the hand controller can

adequately reproduce high frequencies, the human would not be able to balance them so

that they should not be passed on to the human.

Given some of the uncertainties in the above, the design philosophy became one of vastly

8
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overdesigningthe system with the notionthatitwould be easierto scaledown the system,

perhaps with only softwarechanges then to creategreatercapabilitywhich would surely

necessitatevery expensivehardware changes. To thatend, the translationalvolume of 300

mm was adopted. Additionally,the forcegeneratingcapabilitywas taken as roughly 18.18

N (40 Ibf).ExperiencedesigningStewartPlatformsteachesthatlargervolume mechanisms

are generallycapable of generatinglargerloads. By having largeinitialactuators,when

the system isscaleddown assuming thatthe same actuatorsare used,therewillbe enough

residualcapabilityto develop a smallerload,say 9 N. Additionally,the constructionand

proofof a largesystem with greatermass and inertiacontentrelativeto a smallersystem,

tends to prove the capabilityof the smallersystem. Finallyselectingan apparentlylarge

staticload capability,assuresthat there willbe enough residualpower in the actuators

to absorb the dynamic loads of the mechanism therebyexertinga reasonablestaticforce

reflectingload againstthe operator.

1.4 Program History

This program began with the submissionofa Phase I SBIR proposalin June of 1987. Phase

I was awarded and ran from February,1989 to August 1989, when the Phase II proposal

was submitted. The Phase Ieffort:1)establishedthata mechanism ofreasonablesizeand

loadgeneratingcapabilitycouldbe built,and 2)developedkinematicalgorithmsand tested

theirexecutionspeed.

Phase IIbegan inJulyof1989 with theintentofcontinuingthe researchwith thespecific

goalsofconstructinga mechanism, developingand constructinga universalcontrollerand

interface,integratingthe system with a General ElectricP60 robot equipped with a six

DOF forcesensingcell,and testingboth the hand controllersubsystem and the integrated

master/slaveteleoperationsystem.

1.5 Research Approach and Report Organization

The research approach dictated independent development of the mechanism and mechanism

controller and universal interface. This decision followed from the early establishment in

Phase I of the kinematic and control algorithms. Accordingly, the report documents the

mechanism and controller development separately. Chapter 2 describes the mechanism

design, Chapter 3 details the controller design while Chapter 4 documents the testing. The

balance of the report discusses the results and suggests future research opportunities.

10



Chapter 2

Hand Controller Mechanism

Development

This chapter details the development of the hand controller mechanism. It begins with

a defense of the mechanism type, followed by a theoretical description of the mechanism,

kinematic synthesis, mechanism detailed mechanical design, and actuator selection and

design.

2.1 Type Synthesis

Chapter 1 made the axgnment forthe development ofa sixDOF mechanical linkagemech-

anism as part of the man machine interfacefor forcereflectingteleoperation.We now

considerthe task of realizingsuch a mechanism. Mechanism development classicallypro-

ceeds along a three part sequence,type synthesis,kinematic synthesisand analysis,and

detailedmechanical design. This sectionisdevoted to type synthesis.Type synthesisas

itsname impliesembodies the selectionof the type of mechanism, that isthe selectionof

the overallmobility,the number of links,and theirgenera/relativegeometric relationship.

Kinematic synthesiscomprisesthe selectionofthe actualdimensions and proportionsofthe

mechanism. Kinematic analysisdeterminesthe loadsin the variouslinkswhilethe detailed

mechanical designprovidesforbearings,materialselectionand descriptivedrawings.

This research effort investigated the implementation of the Stewart Platform as the

optimum type of mechanism for the force reflecting hand controller. Comparison of Figure

1.3 with Figures 1.2 and 1.1 reveals two disparate kinematic structures between these three

six DOF mechanisms. The first mechanism features the "parallel _ structure while the latter

two have the "serial" structure. Differences in performance capabilities are discernable by

inspection:

11



Actuator Size: The parallel mechanism can develop more payload capability for each

unit of actuator motive capability due to the distribution of loads across the actuators

as opposed to the serial mechanisms which feature a mechanically disadvantageous

cantilevered structure and concentration of loads into individual actuators.

Power Consumption: By sharing the loads across the actuators, the parallel mechanism

requires less power than the serial. The serial mechanisms can in certain configurations

have the same load distributed through each actuator.

Range of Motion: The serial mechanisms in general will enjoy a greater translational

and rotational range of motion relative to the parallel mechanism.

Mechanical Stiffness: The closed chain structure of the paraLlel mechanism has a decided

advantage in mechanical stiffness over the open chain cantilevered serial mechanism.

Mechanical Mass and Inertia: In general, the paraLlel mechanism wiU have less mass

and mechanical inertia, principally because the actuators can be made smaller and

more easily located at the base of the joints in a relatively stationary position.

Mechanical Friction: An advantage in mechanical friction is not apparent by inspection.

The paral]el mechanism has twice the number of joints contributing to the system

friction as does the serial mechanism. However the loading in parallel mechanism joints

should be considerably less than that of the serial mechanisms thereby developing

lower friction per joint.

Given the six DOF mobility requirement, the type synthesis reduced to the selection be-

tween the serial and parallel linkages. Given the advantages, ascribed above to the parallel

mechanism, and the as yet undeveloped and unexploited nature of the Stewart Platform

mechanism, the hand controlhr development based upon the Stewart Platform comprised

a worthy research goal.

2.2 Stewart Platform Theory and Design Methodology

Mechanism theory and design routinely evolves from considerations of kinematics or from

conceptualizing devices from the viewpoint of linkage positions and orientations, and con-

straint. Force and torque transfer relations then follow from Newtonian statics or La-

grangian mechanics. This viewpoint is natural for simple linkages such as the four bar

planar mechanism. Typically design equations are couched exclusively in terms of kine-

matic parameters.

The Stewart Platform resists conceptualization from the kinematic viewpoint. It was

found exceedingly convenient to take advantage of the duality in nature between position

and orientation and force and torque, and to approach the Stewart Platform from the later

viewpoint. This yielded insight into the mechanism behavior and allowed the development

of a reasonably straightforward design methodology.
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A StewartPlatform comprises a base platform usually taken to be fixed in inertial

space, six sublinkages termed legs, and a moving payload platform. The legs are connected

as shown in Figure 2.1. One joint connection is a three DOF rotational ball and socket or

spherical joint. The other joint connection is a two DOF rotational universal or Hooke joint.

The leg itself is a pure slider joint. Notwithstanding friction in the joints, this connection

yields stress resultants of pure force aligned parallel to the major axis of the leg. The

sequence of the joints, has no kinematic significance except that the slider must be between
the two rotational terminations.

Considerthe method ofsectionsappliedtothe sublinkageofFigure2.1.A planeistaken

through the legnormal to itsmajor axis.We assume that the jointsare frictioniess.Ifa

torqueresultantisdevelopedin the sectionplane,we see that neitherrotationaljointcan

resistthisload and the system willbe dynamically unstable.Ifa torque resultantoccurs

normal to the plane,the leg sectionwith the threeDOF jointwillnot be stablesinceits

jointterminationcannot resistthiscomponent. Since an equal and oppositetorque would

be requiredon the legsectionwith the two DOF joint,and sincethe sectionwith the three

DOF jointcan bear no axialtorques,the former sectionmust alsohave no axialtorque.

Ifforceresultantsexistin the sectionplane,thesewillgeneratetorquesabout both rotary

jointswhich neitherjointcan resist.Hence the onlyload component which can existin the

sublinkageispure axialforce.This analysisdid not stipulatethe sequence of the joints.

The orientationofthe sectionplane did not compromise the generalityofthe analysis.

Now consider the motion and dynamic balance of the payload platform. The payload

platform represents a rigid body free to undergo general six DOF motion. In order to develop

arbitrary motion, a corresponding system of dynamically balancing forces and torques each

spanning R 3 must be brought to bear upon the payload platform. The succinct minimum

design problem then reduces to arranging the six legs which each generates pure force along

its axis, such that the resultant equipolent system of leg forces spans R 3 for force and

torque. If this condition is satisfied, then we say that the system is nonsingular. Table

2.1 summarizes the complete set of theoretical design requirements. From the previous

arguments it is obvious that a minimum of six legs is required, but more can be added if
desired.

Given the theoretical design requirements of Table 2.1 a design methodology can be

developed. The design methodology flows from adopting the force and torque viewpoint

towards the mechanism. An optimum configuration from the dual viewpoint of singularity

avoidance and actuator efficiency is asserted to he that depicted in Figure 2.2. In this figure,

the legs lie pairwise in the three faces and face extensions of a right tetrahedron. The leg

axes parallel to and equally spaced from the tetrahedron edges. The payload platform center

coincides with that of the tetrahedron vertex. Each pair can generate a pure force along the

tetrahedron edge if the individual leg forces have equal magnitude. If the forces are equal

and opposite, a pure torque normal to the tetrahedron face results. Since the edges and

planes are all mutually orthogonal, this configuration spans R 3 for both force and torque.

This configuration is referred to as the decoupled configuration. The design methodology

proceeds from attempts to maintain this configuration while satisfying the other theoretical

design requirements.
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Forces and Moments in the

Upper Section Plane and
Moments Normal to the

Plane Cannot be Resisted

by the Upper Joint

Only Pure Axial
Force Can be

Developed Given
Frictionless Joints /

Lower Joint

Figure 2.1: Stewart Platform Leg Connection
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Mechanism Singularity

Leg Stroke

Leg/Actuator Loadings

Inter Leg Interference

Leg/Payload Platform Interference

Leg/Base Platform Interference

Joint Range of Motion

Joint Singularity

The legsmust be arranged such thatthe forcesystem

isnonsingularforallrequiredpayload platformposes.

The legs must be arranged and designed such that for

the required range of payload platform translational
and rotational motion, the mechanical limitations for

the stroke of the legs is not exceeded.

The legsmust be arranged in conjunctionwith ac-

tuatorselectionsuch that the requiredforcescan be

developed againstthe payload platform.

The legs must be arranged such that no mechanical
interference exists between the legs during the pay-

load platform motion.

The legs and payload platform must be arranged such

that the legs and payload platform do not interfere

mechanically during payload platform motion.

The legs and base platform must be arranged such

that the legs and base platform do not interfere me-

chanically during payload platform motion.

The joints must be designed such that they have a me-

chanical range of motion appropriate for the required

motion of the payload platform.

The joints must be designed such that no mathemat-

ical singularity is encountered within the joint during

payload platform motion.

Table 2.1:Mechanism TheoreticalDesign Requirements
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Before proceeding with the development of the design methodology, let us examine the

optimum or decoupled configuration more closely. This arrangement has several virtues

other than meeting the minimum requirement for nonsingularlty. First, it is asserted that

this configuration is as "unsingular" as possible, since the leg resultant forces and torques

are mutually orthogonal and span R 3, they constitute an orthogonal ba_ _ for the system.

As the system moves, the resultants will no longer maintain the orthogG:._ configuration.

However by starting from this configuration, orthogonality or near ogthogonality can be

preserved as long as possible.

The second advantage of the decoupled configuration is minimum actuator force require-

ment for a given load to be exerted against the payload platform. Referring to Figure 2.3,

the legs pairs have parallel axes equally spaced from the tetrahedron edge. The parallel

alignment allows no component of force acting in opposition and cancelling between the

legs. The fact that the legs are equally spaced from the edge also contributes to minimum

actuator force requirement. Consider the situation where a pure force is required against

the payload platform. If the legs were not equally spaced about the center then equal leg

forces would develop an unwanted torque. With the legs equally spaced, they share loads

equally resulting in minimum required actuator forces.

The decoupled configuration is felt to yield ease of control and control system design.

In the hand controller application, each leg will be driven to produce a force corresponding

to the required force and torque state at the handgrip. By having the legs orthogonal, the

complication of the controller is reduced. With coupling, any inaccuracy in the force in one

leg will show up as a noise disturbance in the other legs.

The decoupled configuration has one disadvantage pertaining to leg skewness and un-

desirable disturbance torques associated with rotational displacements of the payload plat-

form. Figure 2.4 depicts two legs which were initially parallel and later subject to a rotation

of the payload platform. The resulting skewness of the legs develops force components both

parallel to and normal to the mutual orthogonal between the two legs. The normal force

components generate an unwanted couple about the centerline of the two legs. This couple

must be counteracted by some moment generated by another pair of legs. This situation

can be counteracted by having the legs intersect at a point such that they never become

skew. The price paid for this is less e_ciency in developing force for the reasons cited in

the previous paragraph.

Given that the decoupled configuration is best, the design methodology follows by at-

tempting to arrange the legs such that the decoupled configuration is maximally preserved

while satisfying the other theoretical design requirements. The general way to do this is

simply to preserve the leg directions in absolute space. This can be done by making the

legs as long as possible such that a given payload translation results in a small change in leg

angle over the long leg length. A second method is to arrange the legs to be as parallel as

possible to the desired direction of translational motion. This can only be done in one of the

three orthogonal directions and results in the worst case situation in the other two direc-

tions. This later method does not suit the force reflecting hand controller application. The

direction of the forces and torques are random such that the mechanism behavior should
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be homogeneous over R 3.

A method of maximizing leg stroke is displayed in Figure 2.5. This arrangement relies

on the fact that minimal leg extension occurs when the translational motion occurs in a

direction normal to the leg axis. If the workspace is to be cubic as in the force reflecting

hand controller, then each leg pair should be orthogonal to one of the faces of the cube

when the mechanism is centered in its workspace. This is easily accomplished with the

decoupled configuration by simply aligning the tetrahedron edges to be parallel to the faces

of the workspace cube.

Experience has shown that mechanism rotation as opposed to translation contributes

most significantly to mechanism singularity. Consider Figure 2.6 which displays a view

normal to a leg pair for several different platform orientations. The key factor to consider

is the leg pair's ability to generate torque with the changing orientation. As the rotation

approaches 90 degrees from center, the moment arm of the leg about center vanishes leaving

no torque generating capability and hence a mechanism singularity. By this line of reason-

ing, a 90 degree rotation represents an absolute maximum for a Stewart Platform. This

capability will be diminished as the mechanism translates from center due to the changing

leg angles with pure translation. To set up the legs for maximum rotational capability, they

should terminate at a point in the payload platform on a line normal to the line containing

the payload platform center point and the leg base joint.

The leg mechanical interference issue is not easily described in prose. The interference

between the leg and upper and lower terminating bodies is most easily managed by arranging

the mechanical hardware to lie opposite the leg side of a plane which intersects joints and

is normal to the leg axis when the mechanism is centered. The inter leg interference is

more complicated and is best managed with solid modelling computer graphic systems. A

configuration particularly resistant to inter leg interference is shown in Figure 2.7. Speaking

in terms of the decoupled configuration, the lower leg of each pair is given zero offset from

the tetrahedron axis and these legs all terminate at the tetrahedron vertex. These three

legs could never interfere due to a mechanism rotational change and could only interfere at

extreme translational limits when the legs become nearly parallel. The three remaining legs

are offset an arbitrary amount from the tetrahedron edges and share a common base joint

termination point with their pair counterpart. Interference can occur at, extreme rotations

when one upper leg strikes the lower leg from a different pair. This configuration suffers

from low actuator efficiency due to the unequal leg offsets from the tetrahedron edge.

The actual kinematic design proceeds on an iterative basis using the above described

intuitive methods and the analytic procedures described in the next section pertaining to

actuator loads and leg lengths. Table 2.2 reiterates a number of design insights to be used

during the iterative design process and also introduces a reduced set of design parameters

relative to the decoupled configuration. The complete kinematic specification of a Stewart

Platform requires the placement in R 3 of 12 joints for a total of 36 parameters selections.

This large number is not amenable to computer parametric study. The reduced set of six

parameters described in Table 2.2 and depicted in Figure 2.8 greatly simplifies the design
task.
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Pair3 & 4 LineintheY-Z PlaneParallelto
theZ Axis,Terminateon theY Axis,

GeneratesForceAlong theZ Axis,and
TorqueParalleltotheX Axis

Z

PairI& 2 LineintheX-Y PlaneParallelto

theY Axis,Terminateon theX Axis,

GeneratesForceAlong theY Axis,and
TorqueParalleltotheZ Axis

2

Y

Pair 5 & 6 Line in the Z-X Plane Parallel to
the X Axis, Terminate on the Z Axis, I'
Generates Force Along the Z Axis, and
Torque Parallel to the Y Axis X

Figure 2.2: Optimum Stewart Platform Configuration
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Whenthelegsarenot parallel,the
componentnormalto their centerline
tendsto cancelandtheresultant
parallelto thecenterlineis reduced.

Whenthelegsareparallel,the I
total availableforceis deliveredto I
themechanismoutput,creatingtheI
greatesteffeiciencyandmaximumI
mechanicalstiffness. I

Figure 2.3: Actuator and Mechanical Stiffness Force Maximization
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When the base joints coincide,
the legs always remain planar
under a platform rotation.

When the base joints
do not coincide, the
legs become skewed
under a platform
rotation, thereby
developing an
unwanted, disturbance

torque.

Figure 2.4: Actuator Pair Skewness Torque
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When the actuatoris
centeredwith respectto the
workspace,and is aligned
normal to the workspce
edge,then the greatest
efficiency of actuatorstroke
is achieved.

il

| !

!1

I I
When the actuator is not

centered with respcet to the

workspace, then a

comparatively longer stroke
is required to reach the
same area.

Figure 2.5: Leg Stroke Optimization
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Systems configured with their upper
joints lying on the line normal to the line
between the lower joint and mechanism
center can rotate +/- 90 degrees

(providing there is no translation
induced change in leg angle) before their
moment arm about the platform center
collapses resulting in a singular
condition.

Figure 2.6: Theoretical Maximum Payload Platform Rotation from Center
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Z

4

5 1

Y

In this configuration, the odd numbered, lower legs on the tetrahedron
edges can never hit each other. Similarly, the even numbered, upper

legs can never contact each other. Only under extreme rotations can the
legs within the pairs contact when they become close to parallel. The
greatest possibility for interference is between adjacent upper and lower
legs (e.g. 2 & 3). Because these legs lie in mutually orthogonal planes,
they can only contact with a 90 degree rotation, at the mechanism
theoretical maximum rotational limit.

Figure 2.7: Configuration with Minimum Inter Leg Interference
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£ Pair Twist Angle

Upper Leg Lateral Offset

H Lower Leg Lateral Offset

O Upper Joint Axial Offset

P Lower Joint Axial Offset

Q Lateral Rotation

This parameter represents the twist of the pair plane

about the tetrahedron edge. It is best kept as zero.

Changing the angle results in the coupling of torques

across the pairs. It is sometimes convenient to change

this parameter to avoid inter leg interference.

This parameter represents the lateral offset of the up-

per leg within the pair from the tetrahedron edge.

Large values yield huge torque generating capability

at the expense of large leg stroke requirements. Ac-

tuator loads are optimized by making its value equal

to that of the lower leg offset.

This parameter represents the lateral offset of the

lower leg within the pair from the tetrahedron edge.

Large values yield huge torque generating capability

at the expense of large leg stroke requirements. Ac-

tuator loads are optimized by making its value equal

to that of the upper leg offset.

This parameter refers to the distance along the leg

axis of the upper leg joint from the plane normal to

the tetrahedron edge containing the tetrahedron ver-

tex. The value should be selected such that the upper

joint lies on the line normal to the line containing the

base joint and the tetrahedron vertex.

This parameter refers to the distance along the leg

axis of the lower leg joint from the plane normal to the

tetrahedron edge containing the tetrahedron vertex.

Large values yield long legs and increased mechanism

stability since the change in leg angle with payload

platform translation is decreased with longer legs.

This parameter represents the change in leg axes di-

rection from the parallel to the tetrahedron edge in

the plane containing the two legs.

Table 2.2: Reduced Design Parameter Set and Insights
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Figure 2.8: Reduced Design Parameter Set
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2.3 Stewart Platform Analytics

This section develops the analytic descriptions of the Stewart Platform, namely the kine-

matics and force transfer relations. In mechanism analysis we describe the zeroth, first, and

second order kinematics, implying the mechanism pose, rate of change of pose or speed,

and acceleration respectively. We also speak of the forward and inverse kinematics. The

forward kinematics implies the determination of the pose of the mechanism as a function of

some generalized coordinate set. The inverse kinematics implies the determination of the

generalized coordinate values when the pose is known.

2.3.1 Vector Description and Generalized Coordinates Selection

Figure 2.9 depicts a general vector configuration useful for describing the Stewart Platform.

The global coordinate frame, {B}, is shown fixed in the base platform. The vectors, bi,

describe the position of the attachment points of the proximal leg joints in the base platform.

The payload platform is shown with a coordinate frame {P} fixed at the centroid. The

rotation matrix expressing in the global frame wiU be denoted as _. The vectors, i_,,

describe the position of the attachment points of the distal joints in the payload platform

relative to the payload platform coordinate origin. The vectors, ii, describe the position

of the l_ relative to the bi. The vector d describes the position of the coordinate origin of

the payload platform relative to the coordinate origin of the base. All these vectors are

expressed in the global coordinate frame.

Many selections of generalized coordinates are possible for the Stewart Platform. The

most convenient set is the length between terminal joints for each leg, denoted herein as

the scalar 8i. This selection is made primarily on the basis of ease transducer placement.

A closed form expression of the payload platform pose as a function of the 0 does not yet

exist. Researchers have postulated that if it does exist, that it would be at least a 32 degree

polynomial. A numerical method described in the following subsection converges quickly

and accurately.

2.3.2 Zeroth Order Kinematics

The zeroth order inverse kinematics express the generalized coordinates as a function of

the payload platform pose which is known and expressed by d and _. From simple vector

algebra we have:

o,= ([[d+p,]- T [[z+ - (2.1)
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Z

P

d

Pi

Bi

Figure 2.9: Stewart Platform Vector Description

The forw_d kinematics express _ and d as a function of the 0. The forward kinemstics

proceed by an iterative method starting from a guess of the initial pose, usually taken as

the center of the workspsce with neutral orientation. First we calculate:

(2.2)

e < . (2.4)

where:

0oc¢ = the vector in R e of actual or measured leg lengths,

• 0old -- the vector in R e of leg lengths corresponding to the initial or previous

mechanism pose,

,1 = s smal] convergence test constant.
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If the method converges immediately implying that Equation 2.4 is satisfied, the pose cor-

responding to the initial guess is assumed to be correct.

If the convergence criteria is not satisfied, then we proceed by adjusting the mechanism

pose. The Stewart Platform has several theoretical assembly configurations. In order to

force convergence into the proper configuration, the amount of motion allowed in a single

step must be restricted. This is done by scaling the vector of leg length changes as follows:

\llAell] (II OII L (2.5)

where:

L = the mathematical "floor" symbol implying the smaller of the left and right

hand terms,

v - a small limiting constant.

We then proceed to calculate a change in the platform pose using the differential properties

of the first order forward kinematics (See the following section):

Sy
gz

5f_= ]

(2.6)

where:

{gz, 6y, &z} = the incremental translational change of the payload platform

position along the z, y, and z axes respectively,

{$f/=, Sft_, 6£t.} = the incremental orientational change of the payload plat-

form orientation about the z, t,', and z axes respectively.

We then update the translational portion of the pose:

["]_z
(2.7)
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To update the orientational portion of the pose we form the cross product of the orien-

tational change vector with the orientation matrix, add the change to the old matrix, and
orthonormalize the result:

A_ =
0 -_ _fly

-6_ 6_ 0

(2.8)

(2.9)

1

;"_'- II;'11 (240)

;new X 3 ¢

k"°'_- ll;.o_x 3'If (2.11)

- k,,_,_ x i._

II/',_,,,x ;,,o,,,II (2.12)

(2.13)

Given d,,ew and R,,,,o we return to the inverse kinematics and perform the calculations

prescribed in Equation 2.1 through Equation 2.4 to determine if the tolerance ¢, has become

sufficiently small.

2.3.3 First Order Kinematics

Mathematicians refer to a Jacobian matrix as a linear mapping between differential quan-

tities. The robotics community embraces a tighter definition of the Jacobian matrix, o¢,

implying the linear mapping from the vector of generalized coordinates or actuator speeds

to the translational and angular velocity vectors of the mechanism output. We write:
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(2.14)

where:

= translationalvelocityvectorin R 3 of the payload platform expressed in

globd coordinates,

= angular velocityvectorin R 3 of the payload platformexpressedin global

coordinates,

= vector in R 6 of the leg speeds.

We now need to derive ff assuming that it exists. We proceed by writing the inverse of

the relation whereby:

(2.15)

We observe that foreach leg,the leglinearspeed vectoristhe projectionof the total

translationalvelocityof the upper jointonto the leg axisvector. The totaltranslational

velocityof each jointistaken as the sum of the platform translationalvelocityplus the

amount induced by the angularvelocity.We write:

(2.16)

where:

= the orientationmatrix expressingthe coordinateaxes of {P} in {B},

_i{r}= the expressionof the i_iin {P},

•_ = ii/ IIi_]I,the unitvectordescribingthe leg direction.

The [i are found from simple vector algebra by:

(2.17)
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The inner product in Equation 2.16 can be distributed and the resulting equation fac-
tored to form:

5_ (2.1s)

Forming the inner product of both sides of the above vector equation with _ yields the
scalar relation:

#_=[_ r (_ × _,)z] (2.19)
D

Equation 2.19 can be written simultaneously for each of the six legs to yield the expres-
sion in vector matrix form:

"_IT (Pl X _I)T

_2r (_x_2) T
•g3 T (/_vj X ,S3 ) T

54T (p4 x _4) r
_sr (_sx _5) r
$6 T (p6 X ,_6 ) T

[:] (2.2o)

Comparing with Equation 2.15 we have our results:

_IT (Pl X "_I)T

_r (P2 × _2) r
_3T (_x_3) T
•_4 T (/_4 X .S4) w

_5r (_s x _s) T
_6T (_6 x _6) T

(2.21)

and

J

_1 T

_2 T

•_3 T

_4 T

]5 T

_6 T

(Pl X _1 )T

(_ x _2)r
(_'_3 X _3) T

(p4 x _) T
(_5 x _)T
(_ x _) T

-1

(2.22)
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2.3.4 Static Force Transfer Relations

In order to properly size the actuators, we must be able to determine the magnitude of

the forces in the legs as a function of the forces and torques associated with the payload

platform. We now derive these relations from the principle of virtual work. This principle

states that the work or energy input at one point of the mechanism must equal the work or

energy output at some other point of the mechanism. We must necessarily account for all
six DOF in the derivation. We write:

62

6y
6z

6fl=
i 6ft_
L

(2.23)

where:

fac_ = the vector in R 6 of forces in the leg actuators,

f_,,_ = the vector in R 3 of forces exerted by the platform against the environ-

ment,

_,_ = the vector in R 3 of torques exerted by the platform against the environ-

ment.

Substituting Equation 2.6 into Equation 2.23 we have:

-T -T -T[.r..,, l Y--" 7" _ltl, tl (2.24)

Now recall that the # are independent of each other. This results from the observation that

the actuators can be moved on an independent basis. Cancelling the # in the above and

transposing we have:

fact ---- jT

_nv

.i
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2.4 Kinematic Synthesis

This section documents the results of the kinematic synthesis. A computer program was

developed to calculate the leg lengths according to Equation 2.1 and forces according to

Equation 2.25. According to the design methodology, a designwas postulatedaccording

to the insightsdescribedand parameters of Table 2.2.For thisdesign,the mechanism was

analyzed by computer by steppingacrossan arrayin translationaland orientationalspace

with the valuesof maximum and minimum leglengthand actuatorloads being recorded.

This processof kinematic designpostulationand computer analysiswas repeated untila

suitabledesignwas achieved.

2.4.1 Data Presentation Format

All analyticdata are presentedinthe format of Tables2.3,2.4,2.5,and 2.6.In each table

the data representa maximum or minimum of a performance parameter as a functionof

positionin the z - y plane.The individualentriesbound the parameter forthe particular

positionin the plane acrossa z translationalrange of +]- 12.7 cm from center,with

simultaneous handgrip orientationaldisplacementsof +/- 45 degrees about axes spaced

every 22.5degreesinazimuth and elevation.

The Jacobian transpose matrix of Equation 2.25 is six by six. The individual entries

vary with the position and orientation of the handgrip. Each represents a ratio of force or

torque exerted by the handgrip along one of the coordinate axes against the operator to the

force in one of the legs. The rows of the Jacobian transpose represent the six ratios for leg

number one. Tables 2.3 and 2.4 represent the maximum and minimum values of the third

entry of the first row which corresponds to force in the z direction. When the mechanism is

centered in the x - y plane, the algebraic maximum and minimum ratios across all vertical,

and rotational displacements are seen to be 0.22 and -0.44 respectively. The entries are

dimensionless being ratios of force to force. Hence for the mechanism to generate a force of

1N in the z direction would require a maximum 0.44N in leg one at the worst case pose.

The magnitude of the force entries varies with displacement from center, eventually growing

exponentially. Small variations are desirable for both actuator sizing and ease of control.

Tables 2.5 and 2.6 display the absolute values of joint to joint leg length or 0 for leg

number one. Figure 2.10 depicts a bare bones schematic of the optimal configuration with

coordinate axes and leg numbers labeled. Comparison of the tables and the figure confirms

the computer modelling. A general symmetry is observed about the y axis with shorter

lengths for large negative y values and large lengths for large positive y values. The minor

asymmetry arises from the orientational changes of the handgrip.

Tables of the maximum values for force, torque and leg length across all legs, vertical

positions and orientations are presented in Appendix A. The torque tables have dimensions

of reciprocal centimeters, such that a torque exerted by the mechanism against the operator

in units of N • cm will require a corresponding force in the legs in units of N.
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Y

(cm)

12.7

10.16

7.62

5.08

2.54

0

-2.54

-5.08

-7.62

-10.16

-12.7

Units - Dimensionless

0.06 0.04 0.02 0.01 0.03 0.06 0.09

0.I0 0.07 0.04 O.O:J 0.05 0.07 0.09

0.13 0.I0 0.06 0.04 0.06 0.08 0.I0

0.16 0.15 0.13 0.II 0.09 0.i0 0.12

0.26 0.24 0.21 0.19 0.16 0.14 0.13

0.37 0.34 0.30 0.27 0.25 0.22 0.19

0.49 0.45 0.41 0.37 0.34 0.30 0.27

0.63 0.58 0.53 0.49 0.44 0.40 0.36

0.80 0.73 0.68 0.62 0.57 0.52 0.47

0.99 0.92 0.84 0.78 0.72 0.66 0.60

1.23 1.14 1.05 0.97 0.89 0.82 0.76

-12.71-10.161-7.621-5.081-2.541 0 12.54

X (cm)

0.14 0.19 0.26 0.32

0.14 0.20 0.26 0.32

0.15 0.20 0.26 0.32

0.16 0.21 0.27 0.33

0.17 0.22 0.27 0.33

0.18 0.23 0.28 0.34

0.24 0.24 0.29 0.35

0.32 0.29 0.30 0.36

0.43 0.38 0.34 0.37

0.55 0.49 0.44 0.39

0.69 0.63 0.57 0.51

5.o817.6211o.16112.7

Table 2.3: Maximum of _', for Leg 1 vs Position in X-Y

Y

(cm)
Units - Dimensionless

12.7 -1.34 -1.16 -1.01 -0.89 -0.79 -0.70 -0.62 -0.55 -0.49

10.16 -1.18 -1.01 -0.90 -0.79 -0.71 -0.63 -0.56 -0.50 -0.45

7.62 -1.04 -0.90 -0.79 -0.70 -0.63 -0.56 -0.51 -0.45 -0.43

5.08 -0.92 -0.80 -0.70 -0.62 -0.56 -0.50 -0.45 -0.43 -0.44

2.54 -0.81 -0.71 -0.63 -0.56 -0.49 -0.44 -0.43 -0.44 -0.45

0 -0.71 -0.63 -0.56 -0.49 -0.44 -0.44 -0.45 -0.46 -0.47

-2.54 -0.62 -0.55 -0.49 -0.45 -0.46 -0.46 -0.47 -0.48 -0.49

-5.08 -0.54 -0.48 -0.47 -0.47 -0.48 -0.48 -0.49 -0.50 -0.51

-7.62 -0.51 -0.49 -0.49 -0.49 -0.50 -0.51 -0.51 -0.52 -0.53

-10.16 -0.56 -0.54 -0.51 -0.52 -0.52 -0.53 -0.54 -0.55 -0.56

-12.7 -0.62 -0.59 -0.56-0.54-0.55-0.55-0.56 -0.57-o.58
-12.71-10.161-7.621-5.o81-2.541 o I 2.54 I 5.08

X (cm)

-0.44 -0.43

-0.43 -0.44

-0.44 -0.45

-0.45 -0.47

-0.47 -0.48

-0.48 -0.49

-0.50 -0.51

-0.52 -0.53

-0.54 -0.56

-0.57 -0.58

-0.60 -0.61

I 7"6211°:16[ 12.7

Table 2.4: Minimum of _', for Leg 1 vs Position in X-Y
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Y

(era)

12.7

10.16

7.62

5.08

2.54

0

-2.54

-5.08

-7.62

-10.16

-12.7

96.2

93.7

91.3

88.8

86.3

83.9

81.5

79.0

76.6

74.2

71.8

-12.7

95.7

93.3

90.8

88.3

85.8

83.4

80.9

78.5

76.0

73.6

71.2

I-lO.161

Units - Centimeter

95.3 95.0

92.9 92.5

90.4 90.0

87.9 87.5

85.4 85.1

82.9 82.6

80.5 80.1

78.0 77.6

75.'5 75.1

73.1 72.7

70.6 70.2

-7.62 ] -5.08

94.8 94.6 94.5 94.4

92.3 92.1 92.0 91.9

89.8 89.6 89.5 89.4

87.3 87.1 87.0 86.9

84.8 84.6 84.4 84.4

82.3 82.1 81.9 81.9

79.8 79.6 79.4 79.4

77.3 77.1 76.9 76.9

74.8 74.6 74.4 74.4

72.3 72.1 72.0 71.9
69.9 69.669.5 69.4

I-2.541 o 12.5415.o8
X (era)

94.5 94.5 94.7

91.9 92.0 92.2

89.4 89.5 89.7

86.9 87.0 87.2

84.4 84.5 84.7

81.9 82.0 82.2

79.4 79.5 79.7

76.9 77.0 77.2
• !

74.4 74.5 74.7

71.9 72.1 72.3

69.5 69.6 69.8

7.62110.16112.7

Table 2.5: Maximum of O for Leg 1 vs Position in X-Y

Y

(era)

12.7

10.16

7.62

5.08

2.54

0

-2.54

-5.08

-7.62

-10.16

-12.7

85.8

83.3

80.8

78.3

75.9

73.4

70.9

68.4

65.9

63.5

61.0

-12.7

85.6

83.1

80.6

78.1

75.6

73.1

70.6

68.1

65.6

63.1

60.6

I-lO.161

Units - Centimeter

85.4 85.3

82.9 82.8

80.4 80.3

77.9 77.8

75.4 75.3
72.9 72.8

70.4 70.3

67.9 67.8

65.4 65.3

62.9 62.8

60.4 60.3

-7.62 [-5.08

85.3 85.4 85.5 85.7

82.8 82.9 83.0 83.2

80.3 80.4 80.5 80.7

77.8 77.9 78.0 78.2

75.3 75.4 75.5 75.7

72.8 72.8 73.0 73.2

70.3 70.3 70.5 70.7

67.8 67.8 68.0 68.3

65.3 65.3 65.5 65.8

62.8 62.8 63.0 63.3

60.3 60.3 60.5 60.8

1-2.541 o 12.5415.o8
X (cm)

86.0 86.4 86.8

83.5 83.9 84.3

81.0 81.4 81.8

78.5 78.9 79.3

76.0 76.4 76.9

73.6 74.0 74.4

71.1 71.5 71.9

68.6 69.0 69.5

66.1 66.5 67.0

63.6 64.1 64.6

61.2 61.6 62.1

7.62110.16112.7

Table 2.6: Minimum of O for Leg 1 vs Position in X-Y
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2 3

5 y+

X+ 6

The optimum configuration is based upon the decoupled configuration.
The handgrip joint terminations had to be slightly withdrawn from the
coordinate axes (tetrahedron edges) to allw room for the operator's hand.
The operator reaches in with his forearm parallel to the Y axis. The cubic
workspace is aligned with edges parallel to and centered about the
coordinate axes. When the handgrip is centered, the hangrip and base
frames share the same coordinate system.

Figure 2.10:Optimal Hand ControllerSchematic

36



2.4.2 Optimal Kinematic Design

Over 20 different designs were analyzed before the design depicted in Figure 2.10 was

developed. Unlike Figure 2.9 which depicts a generic Stewart Platform with noncoincident

Cartesian coordinate systems for the base platform and payload platform or handgrip, the

optimal configuration has coincident Cartesian references when the handgrip is centered in

its workspace. The vectors, 15and b, describing the position of the handgrip and base joint

terminations respectively in their own coordinate frames are given in Tables 2.7 and 2.8.

The unitsof displacementin the tablesare centimeters.

Some observations are in order relating to the geometry of the optimal design. This

particular hand controller is intended to be used by a right handed operator standing and

facing the -y direction, with his right arm parallel to the -y direction. The arrangement

could easily be inverted for a left handed operator. The translational cube has axes parallel

to the global reference axes to maximize the translational range for the given leg stroke.

The design adheres very closely to the decoupled configuration. The handgrip joints are

withdrawn slightly towards the base from the ideal point where they would intersect the

normal to the line from the base joint to the handgrip center. The base joints within the leg

pairs were placed as close together as the mechanical design constraints would allow. The

handgrip is designed for an average sized hand. The geometric center of the mechanism was

taken to be coincident with what would appear to be the center of a loosely clenched fist.

The design suffers from several ergonomic drawbacks. First, when large rotations about

the +z direction are required, joint six tends to contact the operator's wrist. This was

tolerated to maximize the leg stroke as discussed in the previous paragraph. Second, the

mechanism itself is very large, certainly too large for consideration for space flight. The large

size was chosen so that smaller working volumes could be tested with the same hardware to

find a region of comfort for the operator. A careful study should be performed to determine

an optimal hand controller range of motion such that the mechanism size could be reduced

accordingly.

The ergonomic difficulties could be attenuated by rearranging the system by passing a

plane through the base joints, rotating this plane to the vertical, and having the operator

carry his forearm normal to the plane. The upper joints were extended away from the

handgrip to allow more space around the hand which enters the handgrip from the side.

With the alternative arrangement, the upper joints could probably be extended upwards

towards their optimal position to realize minimum force variations with rotation and to

realize maximum rotational capability.

Table 2.9 displaysthe system levelresultsof the kinematic synthesisto includethe

maximum and minimum actuator ratiosfor force,.7",and torque, T, joint to jointleg

length,®, and leg stroke.These valuesrepresentthe worst case numbers forthe optimal

kinematicarrangement forhand controllerpositionswithina 25.4cm cube centeredabout

the origin,and with rotationsof +/- 45 degreestaken about any axispassing anywhere

through the cube in arbitrarydirections.
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i_I {e} /_(P} /33 (p) /_4 (P} /_s (P} /_{v}

z -6.58 6.58 -6.59 -6.59 0.00 0.00

y -6.59 -6.59 0.00 0.00 -6.58 6.58

z 0.00 0.00 -6.58 6.58 -6.59 -6.59

Table 2.7: Handgrip Joint Coordinates cm

bl b2 b3 b4 bs be

z -3.70 3.70 -81.08 -81.08 0.00 0.00

y -81.08 -81.08 0.00 0.00 -3.70 3.70

z 0.00 0.00 -3.70 3.70 -81.08 -81.08

Table 2.8: Base Platform Joint Coordinates cm

Hand Controller Kinematic Synthesis Results

Jrm_ 2.13

_'min -1.34

T_az 0.22 (I/cm)

Train -0.22 (1/cm)

O_._ 96.38 (cm)

0,_. 59.08 (cm)

e,,,_ - O_i,_ 37.31 (cm)

Translational Volume 25.4 (cm cube)

Rotational Capability +/- 45 Degrees About

Any Azis Intersecting the

7Yunslational Cube

Table 2.9: Hand Controller Kinematic Synthesis Results
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2.5 Actuator and Drive Selection and Design

Thissectiondiscussesthe actuationand driveselection.Itcoversthe type synthesis,analysis

and detailedmechanical design.The actuationand driveselectionwas of such importance

that itwas performed firstand allowed to steerthe restof the mechanical design. The

optimum kinematicdesignofthe lastsectionwas not rendered without iterativeinput from

a conceptualactuationand driveselectionprocess.

In the development of the actuation and drive, the following tenets were taken as guiding

principals to achieving a successful prototype:

Actuation Force The actuation had to provide not only the motive force to satisfy the

static loading requirements of generating force and torque against the operator accord-

ing to Equation 2.25, but also to accelerate the system inertia. To repeat an earlier

theme, the hand controller was intended to have transparency from the operator's

viewpoint, or equivalently very high force feedback fidelity. The design philosophy

therefore was to provide a superabundance of actuation capability.

Actuator Inertia Actuation generally contributes significantly to system inertia. In de-

veloping actuation the actuator inertia had to be kept small both from the viewpoint

of the internal actuator moving parts but also from the gross moving mass of the

entire actuator assembly.

Actuation Transmission One method to achieve high actuation force is to implement

transmissions to achieve mechanical advantage. Transmissions universally add to

friction, inertia, and backlash. Transmissions were never seriously considered and a

direct drive philosophy was adopted from the beginning.

Mechanical Backlash Mechanical backlashsharplyattenuatesforcefeedbackfidelityand

alsointroducesdestabilizinginfluencesintothe controlsystem. Backlash was viewed

as a fatalentityand treatedaccordingly.

Mechanical Friction Mechanical friction attenuates the force feedback fidelity. All rea-

sonable measures were taken to reduce friction.

Actuator Mechanical Interference The actuator had to be placed such that it would

suffer no mechanical interference during system motion.

Drive Internalization The system drive coupling the actuator to the moving sliders in

the legs should be internalized to reduce the danger of the entanglement with the

operator's person or other equipment.

Drive Mass The mass of the drive attenuates the force feedback fidelity by virtue of its

contribution to the system inertia. Efforts were made to minimize this.

Drive Friction The drive itself can contribute to the system friction by the bending of

cables or other sliding contact mechanisms. Efforts were made to minimize this.
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Drive Compliance The drive itself has some compliance and can effectively introduce

backlash or mechanical vibration modes. Stiffness of the drive was held to be very

valuable.

Flexibility The nature of mechanical hardware allows very little opportunity for flexibility

once a design is executed. The actuator and drive design process emphasized creating

opportunities for simple alterations after the final design was developed.

Capability P,Ask Exposure All design activities introduce the notion that the final imple-

mentation may not be the best way of realizing a particular function. A philosophy of

implementing difficult, new concepts which could prove beneficial was adopted provid-

ing these concepts had a well known backup mechanism which could be interchanged

quickly and economically.

Three actuation methods, electric, hydraulic and pneumatic, were considered. For space

applications, only electric was deemed to be appropriate. Also, severe control problems

were anticipated with hydraulic and pneumatic due to compliance.

The following electric actuator embodiments were considered:

Direct Current Brush Type Motors A wide variety of these motors is commercially

available at low cost. Brushes have the disadvantage of wearing out, creating airborne

dust in a space environment, and being susceptible to dust created elsewhere in a

space environment.

Direct Current Frameless Brush Type Motors These motors are identical to the pre-

vious motor, except that the user must provide the housing and bearings.

Direct Current Brushless Motors These motors operate without brushes by imple-

menting electronic commutation. Electronic commutation has a distinct advantage

in overcoming torque ripple, a phenomena where the torque output of a motor varies

with rotor angular position for constant current. The concept is very well developed

but the motors and controllers are very expensive. Increasingly, more models are be-

coming available and the price is dropping. Due to their advanced nature, one must

Frocure a motor and controller from the same vendor.

Linear Electric Motors Linear electric motors provide linear force and motion directly

as opposed to the previous motors which are all rotary. Linear motors are attractive

because the hand controller requires linear motion in the legs and the potential for

realizing a leg with a linear motor is realistic. However, these motors require an array

of magnets or electromagnets along their length and are therefore very massive and

consume large amounts of power.

The brush type DC motors were selected for the hand controller application. The opportu-

nity of creating a very compact package was felt to be very valuable. Additionally, research
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suggestedthat friction andinertia could be reduced with their application. Under the pro-

totype and proof of principle nature of the effort, the advantages of the brushless motors

were not deemed to be worth the cost. For the ultimate space application, brushless motors

should be given very serious consideration.

The specific motor selected was the QT-1401-D manufactured by Inland Motors, Red-

ford, Virginia. This motor features high magnetic flux, rare earth, samarium cobalt mag-

nets. The pertinent motor performance data are given in Table 2.10. The motors were

configured into an actuator subsystem as shown in Figure 2.11. Two motors were placed

on the outer ends of a single drive shaft with their poles angularly spaced to be completely

out of phase with each other. This was done for the following reasons:

Maximum Actuation Capability With two motors on a single shaft and a cable pickoff

of 0.5 cm radius, the actuator package can generate a maximum of 15.87 N (34.92

Ibf) linear force.

Minimum Torque Ripple With the rotors phased on the shaft, the averaged torque

ripple is cut in half.

Minimum Cogging Torque With the rotors phased on the shaft, the magnitude of the

cogging torque is cut in half.

Minimum Bearing Friction Prepackaged motors have a bearing on each end of the ro-

tor with a cantilevered power pickoff on the motor shaft. The cantilevered loading

produces huge loads and friction in the bearings. By using two motors on the ends of

a shaft and taking the power off between the rotors and bearings, the bearing friction

is greatly reduced.

Minimum Motor Motion With a prepackaged motor, the motor would have to be mounted

to the side of the lower joint, requiring that it undergo significantly more motion than

with the motor effectively centered about the joint. This also reduces the mechanical

interference of the motors.

At the worst case handgrip pose the force scaling factor is 2.13. With this actuator config-

uration, the system can generate 7.45 N (16.39 lbf) along any one of the coordinates axes

with no torque about any axis. At the mechanism center pose, the worst case force scaling

factor is 0.5004 implying that the mechanism can generate 31.75 N (69.85 lbf) along any one

of the coordinate axes with no torque. The force generating capability is suitably excessive.

When the mechanism is eventually scaled down, the force scaling factors will become larger

such that the actuator package will be merely adequate. The calculation of simultaneous

force and torque generating capability is straightforward mathematically through Equation

2.25, but is highly dependent upon the specific loading and mechanism pose. A very crude

estimation is to simply use the worst case force and torque scaling factors in the following

equation based upon generating the maximum possible leg force:

(2.13 x Jrde,i,.ed) 4" (0.22 (l/cm) x T&,ireat) = 15.875 N. (2.26)
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Inland QT-1401-D Performance Data

Peak Torque 3.96 N. em

Motor Constant

Torque Sensitivity

0.269

0.325 N._
Amp

Static Friction 0.130 N. cm

Maximum Winding Temperature 155 * C

Rise 15 _I_Temperature

Average Ripple Torque 7 %

Poles 8

Table 2.10:Inland Motor QT-1401-D Performance Data

Two brush type motor rotors were press fit I
onto each motor shaft. The rotor poles we_

carefully set completely out of phase to l

reduce torque ripple and cogging. |

Figure 2.11: Actuator Configuration

42



Thermal considerationsof the motor package were a concern.A crude thermal analysis

was performed to evaluatethe situation.Simple conduction calculationsindicatedlarge

temperature rises.Fin stockwas added to the ends of the motor shaftto aid in cooling.

Under continuousoperationconditions,a temperature riseof 107 C ° was calculated.The

actualduty cycleofthe hand controllerisnot known however a good guessshouldbe around

25% foreach actuator.No heatingwas noticedduringsystem testing.

As previously indicated a cable drive system was selected in conjunction with the rotary

DC motors. The drive consisted of a cable wrapping 4.5 times around the grooved motor

shaft with the one cable end terminating directly on the bottom or retracting end of the

leg slider, while the other passed up the leg and over a turning shaft to terminate on the

extending end of the leg. The cable tension could be altered by a threaded adjustment and

nut on the top end of the cable. The cable displayed some noticeable stretch under load and

slippage on the motor shaft when violent load changes occurred. This is discussed further

in the chapter devoted to system testing.

The following other drive configurations were considered in making the selection:

Cable with Rack and Pinion In thisconfiguration,a continuous cable made a single

passaround the motor shaftto drivean idlershafton the upper end of the nonexten-

sibleouterleg.The idlerinturn drove a pinionwhich engaged a rack mounted on the

slidingportionof the leg.This approach was rejecteddue to the additionalmoving

mass of the rack,the difficultyin removing the backlash from the gearing,and the

frictionassociatedwith the gearing.

Cable with Friction Drive This approach isidenticalto the previousone except that a

frictionwheel drivewas used againstthe slidingleginsteadof the rack and pinion.It

was abandoned due to the anticipateddifficultyin making the frictionadjustment.

Timing Belt with Direct Termination on Leg In this approach, a timing belt is used

to make a single pass about the motor and upper turning shaft to a single termination

on the sliding leg. The approach has the advantage of positive traction on the motor

shaft. It is more difficult to provide a tension adjustment for the timing belt because

it is continuous. The best method is to move the upper turning shaft. This inevitably

compromises the position transducer calibration. A second method involves pressing a

idler against the belt from the side at the expense of system friction. It is recommended

that experimentation be performed with the timing belt. The mechanical hardware

can be easily adapted.

Torque Tube with Nut and Lead Screw This concept involved a turning nut at the

upper end of the nonextensible portion of the leg mechanism. A torque tube ex-

tending from the motor and surrounding a lead screw would drive the system. The

concept was rejected due to the mass of the torque tube and lead screw, mechanical

packaging difficulties associated with the transducer, nonbackdriveability, and high
friction associated with an anti backlash nut.
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2.6 Transducer Selection

As previously mentioned, the leg length was selected as the generalized coordinate set. The

direct measurement of this parameter was desirable to avoid the computational burden asso-

ciated with rotary to linear conversion, loss of origin associated with rotational transducers,

and space constraints on the motor shaft. A penalty was paid in placing moving mass on

the leg.

The typeof transducerselectedwas the Induced VoltagePositionSensor(IVPS) Model

# D1051-0001-IVPS-400, Manufactured by Lucas Schaevitzof Pennsauken, New Jersey.

The devicecomprisesa female coilintowhich a male, softiron,spoilerrod isintroduced.

An audio frequencyrange voltagesinusoidisimpressed upon the coil.The extentto which

the spoilerisimmersed intothe coilinfluencesthe coilinductance and hence the voltage

observed acrossthe coil.The voltagevarieslinearlywith the position.

The transducer type selection was influenced by the technical background of the design

team, previous favorable experience with devices based upon the same operational principal,

and previous favorable experience with the manufacturer. The second leading candidate

was a conductive plastic potentiometer manufactured by Vernitech, of Deer Park, New

York. This device is light but consumed a large volume. The manufacturer was hesitant

to support a custom design for the application. The IVPS functions very well hut adds

mass and volume to the legs. It is seriously recommended on a redesign effort that internal

acoustic or laser ranging devices be thoroughly investigated.

The IVPS model featureda 40 cm strokeas an "offthe shelf"product. This particular

strokeinfluencedthe ultimatekinematic configuration.The accuracy of the product +/-

0.3 % of fullscalestrokeas a worst case,with 0.2 % typical.Since the hand controlleris

fundamentally a relativeversusabsolutepositioningdevice,extreme accuracy was not felt

to be a requirement.The devicefeaturesan externalelectronicsmodule separatedby a one
meter cable.

The spoiler portion of the device was mounted with a male thread on a tapped hole in

the extending portion of the leg. The coil was mounted on a custom nylon flange pressed

onto the coil body. The nylon flange featured a lateral position adjustment on four scre- _s

to allow alignment of the coil and spoiler. The spoiler is sleeved in a slippery plastic and

is expected to contact the coil. The device was found to be very forgiving of lateral and

angular misMignment.

2.7 Mechanical Design

This sectionclosesChapter 2. The major components ofthemechanical designarediscussed

inthissectionunder separatesubsections.Comments on the performance ofeach component

and suggestionsforimprovement are presentedhere as opposed to the system performance
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section. The majority of components were fabricated from 7000 series aluminum. The

components were finished with a hard coat with teflon impregnation for appearance and

bearing function.

2.7.1 Base Joint

The base joint comprised a two DOF Hooke or universal joint. The Hooke joint was placed

on the base as opposed to the handgrip because the opposite arrangement would require the

rotation of the entire leg about its major axis contributing undesirably to the system inertia.

The base side of the joint was realized with male pins on the motor housing engaging holes

on an open yoke mounted to the base plate. The pins were formed on a detachable flange.

The joint is assembled by placing the flanges into the yoke, sliding the housing into the

flanges, and screwing the flanges into the housing. The teflon hardcoat did not provide an

especially good bearing. Precision machining was attempted but some backlash remained.

It is recommended that the flange be drilled larger and fitted with a solid teflon bushing.

The leg side of the joint was formed with a yoke on the base of the leg. The yoke was

fitted with ball bearings which engaged the heat sink pins. The heat sinks are on long

aluminum pins which screw into the motor shaft. The system is assembled by aligning

the yoke on the motor shaft and screwing the heat sinks through the yoke bearings. No

difficulties were found in this arrangement. The ball bearings were used as opposed to the

bushings on the base side of the joint because friction in this joint would impede the rotation

of the motor shaft, a critical function.

2.7.2 Lower Leg

The lowerlegand yoke were machined out ofa solidslabof aluminum. The legwas counter

bored to allowspace forthe slidingupper leg.The top ofthe lower legwas preciselybored

to a largerdiameter to allowfora linearbearingpackage forthe slidingupper leg.The leg

can be easilyshortenedby cuttinga portionoffthe top and counterboring a new bearing

seat.This component functionedperfectly.Itdid requirea significantamount ofmachining

which was feltto be unavoidable.

2.7.3 Slider Bearing

The slider bearing interfaced the lower leg to the upper leg. The bearing comprised a

prismatic joint in the sense that it allowed sliding of the upper leg, but prevented the

rotation of the upper leg about its major axis. The internalization of the cable drive and

position transducer prohibited the rotation of the upper leg. The upper turning shaft of

the cable drive engaged a slot the length of the upper leg to prevent the shaft rotation.

The upper turning shaft engaged the bearing seat in ball bearings since the shaft had to
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rotatefreely.The upper shaftwas under considerablestressdue to itssmall diameter and

accordinglywas fabricatedfrom toolsteel.

Initially the sliding bearing relied only on the teflon hardcoat. The system felt smooth

but was very noisy. The bearing housing was relieved for a thin teflon annulus. The

modification resulted in dramatic reduction of friction and noise. The antirotation bearing

relied on the upper turning shaft literally roiling on the slot in the upper leg. The system was

kinematically designed such that the peripheral speed of the turning shaft exactly matched

the liner speed of the upper leg. To allow for machining error the shaft was turned down

slightly and fitted with teflon collars which actually engaged the upper leg. This was a

fortunate design precaution since the slot in the upper leg proved to be difficult to machine

to specification.

2.7.4 Upper Leg

The upper legwas formed from aluminum tube with the outerdiameter reduced on a lathe

to decreasemass and the antirotationslotcut with an end mill.The reduced wallthickness

prohibitedaccurate machining of the slot.Additionallythe wall deflectedunder load to

allowa small amount of lateralplay in the leg.To accommodate the variationin the slot,

theouterdiameter ofthe teflonon the turningshaftwas reduced. End plugswere machined

and bonded intothe tube. The cable tensionprovided a naturaladditionalmechanism to

retainthe plugs.

2.7.5 Upper Joint

The Stewart Platform kinematics require a spherical joint on one leg end. Given that

the Hooke joint was placed on the base, the upper joint had to be spherical. The upper

joint posed a difficult design problem. Calculations of the joint rotational range of motion

based upon the handgrip angular excursion superimposed upon the deviation due to the

translation of the handgrip indicated a 60 degree from center displacement. The mechanical

limitation of the spherical joint comprises the significant limitation on the angular excursion

of the Stewart Platform.

Commercially available ball and sockets typically allow only 30 degrees from center. A

special ball and socket could conceivably be designed to allow a greater range of motion

by implementing a very thin constraining web. Such a joint could potentially suffer from

high friction due to large stresses. Keeping with the philosophy of risking novel approaches

when reasonable backups exist, an alternative realization was sought.

A joint having three rotations intersecting at a point comprises a kinematic equivalent

to a spherical joint. This arrangement suffers from a mathematical singularity at large

displacements when two of the axes become nearly aligned. In this application, a very

conservative approach was taken by developing a joint with four rotational axes. The
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fourth axis was arranged to rotate into the region vacated by the delinquent axis at the

large angular displacements. Figure 2.12 depicts the singularity condition of the three DOF

joint. Figure 2.13 shows the layout of the four DOF joint.

The joint was formed using bearing bronze pins. Great care was taken in machining

but a significant amount of residual backlash exists. A great deal of this is due to the cap

arrangement of the base rotation which has a radial split to allow the standoff to pass during

assembly. The split allows the cap to deform and bind against the internal moving part

such that the cap cannot be fitted securely. It is recommended that new caps be fabricated

with a large hole in top replacing the radial split to allow the standoff to pass axially during

assembly. The gimbal rings should be bored slightly larger and tight fitting solid teflon

bushings installed. Finally, a ball and socket arrangement should be attempted for the sake

of completeness in the research.

2.7.6 Handgrip Frame

The handgrip frame was fabricated from four thin webs welded into an assembly. The
current frame is functional but massive and awkward. The hardware does not reflect the

massive design effort required to achieve the current arrangement. Time and resources

did not allow for the optimization of the structure to remove more mass while maintaining

structural integrity. This approach should be considered but only after a decision is made on

the net system range of motion and the approach of rotating the entire mechanism relative

to the operator.

2.7.7 Force/Torque Sensing Cell

A sixDOF forcetorquemeasuring cellwas mounted inthe handgrip.The specificmodel was

the 50 Ibfversionofferedby JR3, Inc of Woodland, California.A commercially available

model was contemplated as opposed to developinga six DOF sensingbridge within the

handgrip. The cellwas mounted such that itscentercoincidedwith that of the handgrip

with the intentionthat the operatorwrap hishand about the cell.This was done because

the cellhas a verylow torquelimit.Ifthe cellwas offsetto a distancesuch thatthe operator

could close his hand about a separate handgrip without his fingers contacting the cell, then
the cell would reach torque saturation with only moderate handgrip forces.

The currentarrangement isnot ergonomic. Itservedthe purpose wellfor the system

testswith the handgrip mechanicallylinkedtoa teststand.The cellshouldbe offsetiflower

forcelimitationsare adopted,or a custom sensingbridgeshould be developed. The current

cellcost$7,160.00asan offthe shelfitem. A custom arrangement would be proportionately

more expensive.
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Chapter 3

Computation, System Electronics,
and Controller

This chapter discussesthe computer processorarrangement forming the computational

base,the interfacingand communication electronics,and the controlarchitectureforreg-

ulatingthe forcesand torqueswithin the hand controllermechanism. The computational

hardware and controlarchitectureare highlyinterrelated.For organizationalpurposes,the

computational electronicsare discussedfollowedby the controlapproach.

3.1 Hand Controller Electronics

The force reflecting hand controller is controlled by using the following hardware compo-
nents:

• One 80386 33MHz. Personal Computer.

• Three Alicron i860 boards.

• Two parallel I/O boards.

• One analog to digital board.

• One digital to analog board.

The following sections will describe the operation of each of the above components and

finally an overview of the operation of the entire system will be presented. Figure 3.1

presents the electronic layout graphically.
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3.1.1 The Personal Computer

The Personal Computer (PC) used for this project is a 80386 33Mhz PC with a 2 megabyte

memory and a 80387 math co-processor chip. The PC had an extended industry standard

architecture bus which included 8, 16 and 32 bit card slots. In addition to the PC, an

extension card cage was utilized to support the large amount of cards used for the project.

The extension card cage has a 220 watt power supply and ten 16 bit card slots. The PC and

card cage acted as a host machine to house the cards and was used to control the various

boards used.

3.1.2 Alacron |860 Boards

The A1860 is a board-level co-computer for the PC-AT designed to perform high speed

arithmetic computations using the Intel i860. A single A1860 is capable of performing at 40

MIPS or 80 MFLOPS in single precision, and multiple A1860 boards can be linked for even

greater performance.

The A1860 is built around the 64-bit 160 MByte per second bus of the i860 MPU.

Connected to this bus are the i860 processor chip, local memory, the host (AT) interface, and

the expansion board interface. The i860 is a single-chip RISC-technology microprocessor

unit. The highly-parallel, highly-integrated MPU operates at either 33 or 40 Mhz, depending

on the model of A1860. The chip has the capability to complete an integer operation, an

integer and floating point operation, or an integer and floating point multiply and add

operation within a single clock cycle. The i860 operation is pipelined so that a floating

point result for vector-data sets can be produced on every clock cycle.

In the Slave Processor Mode,the Macron numerical library for he A1860 is pre-compiled

and loaded into the A1860 memory and is accessible from the host application. Additional

functions are provided to dynamically allocated data storage and load and retrieve data

from the A1860. Programs benefit from the performance of the i860 without the need to

write and debug i860 specific code. Slave Processor Mode may also be used to call individual

functions of the user written C or Fortran application. A control program loads the user

provided i860 program, whose functions may be individually invoked.

3.1.3 Parallel I/O Boards

The MetraByte parallel digital I/O card, PIO-12, provides 24 TTL/DTL compatible digital

I/O lines, interrupt input and enable lines and external connections to the IBM PC's bus

power supplies. It is a flexible interface for parallel input/output devices such as instruments

and displays, and user constructed systems and equipment.

The 24 digital I/O lines are provided through an 8255-5 programmable peripheral in-
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Figure 3.1:ElectronicsSchematic
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terrace (P.P.I) I.C. and consist of three ports, an 8 bit PA, an 8 bit PB port, and an 8 bit

PC port. The PC port may also be used as two half ports of 4 bits, PC upper (PC4-7)

and PC lower (PC0-3). Each of the ports and half ports may be configured as an input

or an output by software control according to the contents of a write only control register

in the P.P.I. The PA, PB and PC ports may be read as well as written to. In addition,

certain other configurations are possible for unidirectional and bidirectional strobed I/O

where the PC ports are used for control of data transfer and interrupt generation etc. Users

are referred to the Intel 8255-5 data sheet for complete technical description and summary

of the various operating modes of the P.P.I.

3.1.4 Analog to Digital Board

The DT2841 series board is a high performance analog and digital I/O board designed to be

used with the IBM Personal Computer AT or compatible computer systems. The DT2841

contains the following subsystems:

• A/D conversion.

• D/A conversion.

• Digital I/O.

The board is plugged into one of the six fully bussed system expansion slots on the Personal

Computer AT backplane.

The DT2841 series board is designed to operate with the DTT020 Array Processor

for maximum throughput. The DT2841 series board use neither the DMA channels of

the system nor the system bus for data transfers. All digital data transfers from the A/D

conversions or D/A conversions take place between the DT2841 series board and the DTT020

Array Processor over dedicated ports and without the intervention of the host processor.

This arrangement not only provides enhanced performance to the DT2841, but also greatly
reduces overhead on the AT bus.

The DT2841 board is a 12-bit high level board which uses the DT5713-PGH A/D

converter. It is equipped with a programmable gain amplifier which provides gains of 1, 2,

4, 8. It aA:cepts both unipolar and bipolar inputs. Unipolar inputs range from 0 to 1.25V

to 0 +10V, and bipolar inputs from +/-1.25V to +/-10V. The DT2841 is configurable for

16 single-ended or 8 differential inputs. It operates at a maximum throughput of 40Khz.

3.1.5 Digital to Analog Board

The DT2815 digital-to-analog converter (DAC) subsystem is a half-size board developed by

Data Translation for use with the IBM PC/XT/AT and compatible microcomputer systems.
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Theboardconverts a 12-bit binary data word from the host processor into an analog output
voltage or current.

The DT2815 provides eight analog output channels. Each channel can be set for voltage

or current output. The board can function at a rate of up to 3300 conversions per second.

However, the actual throughput depends on a number of factors including the settling time

of the DACs (300 microseconds), the operating firmware program, the number of channels

enabled, and the software running it.

The board can be configured for unipolar or bipolar outputs. The unipolar output range

in 0 to +SV for voltage outputs and 4 to 20mA for current output. The bipolar output range

is +/-5V. The DT2815 can provide voltage output channels and current output channels
at the same time.

All data transfers in and out of the DT2815 are controlled by the program stored in the

host microcomputer. The DT2815 contains two registers: the Data Register and the Status

Register. The Data Register receives the digital code to be converted into an analog signal.

The Status Register conveys information about the state of the on-board RAM and ROM,

and the progress of D/A conversions.

The DT2815 requires +5V, +12V and -12V power which it receives from the micro-

computer backplane. If operating in the current loop output mode, the loop supply can be

taken from the host computer's +12V line or can be supplied internally.

3.1.6 System Operation

The personal computer acted as the host machine for the entire system in which all the

additional boards reside. The three i860 boards are used to run independent processes in

parallel, while the remaining boards are used as I/O boards to communicate and control
the hand controller and the slave robot.

The system is configured in such a way to support the following software architecture.

Because of its comparatively slow speed and its critical path role in information routing, the

personal computer was intended to run only the main program which distributes information

to the Alacron boards and controls the I/O boards and AT bus. The personal computer

was intended to perform a minimal amount of computation. The Alacron boards run the

following processes respectively: Board 1 - the forward kinematics of the hand controller,

Board 2 - the force control algorithm for the hand controller, and Board 3 - the inverse
kinematics of the slave robot.

The main program starts by reading the leg lengths of the hand controller and download-

ing this information to Board 1. While this board is running, the host processor acquires

data from the force/torque cells in the hand controller and slave robot. When finished

the forward kinematic computation, Board 1 sends an interrupt on the AT bus. The host
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processor then reads the forward kinematic output, the measured forces and torques from

the force cells in the hand controller and the slave robot, downloads all this information to

Board 2, and also downloads the forward kinematic result to Board 3. Board 2 and Board

3 can then begin their computational cycle. During this cycle, the host processor reads the

leg lengths of the hand controller, downloads that information to Board 1, and then awaits

the termination of the computation on Board 2. Upon the completion of the Board 2 pro-

cess, the host reads the control command result from Board 2 and sends it out the motors

driving the hand controller. The host machine then reads Board 3 and transmits the slave
inverse kinematic command to the slave robot to complete the cycle. The advantage of this

architecture is the parallel processing which takes place by distributing the computational

requirements across the four processors.

3.2 Control of the Force Feedback

This sectiondiscussesthe approach to the controlof the feedback forceswithin the hand

controllermechanism. Itbeginswith a briefsectionon controlphilosophy followedby the

actualcontrollaw development.

3.2.1 Force Feedback Philosophy

The design philosophy of thisprogram has been that the proper goal of forcefeedback

teleoperationsystem researchisto make the entireteleoperationsystem transparentto the

operator - to make the operatorfeelas ifhe were actuallyon siteand an integralpart of

the slaverobot. Certainly,the operator should not be cognizantof any dynamics in the

hand controllermechanism. In alllikelihood,the operatorshouldbe made cognizantofthe

dynamics of the slaverobot. Simply stated,the slaveand human arm have dramatically

differentdynamics, and itisthe slavewhich performs the work and not the human.

The human has limitations which no amount of "software massaging" can overcome.

In particular, the human has a very limited bandwidth in tracking oscillations by either

providing counterbalancing forces through his arm or by position tracking. This is intuitive

and has been shown experimentally [M2,M3] . Certainly the actuation force of human

muscle has limitations. It is coupled to a mechanical link with mass, the bone. Such

a system has bandwidth limitations. In direct interaction with a vibrating member, the

human is usually thrown back. In a force feedback system, if the human is thrown back,

a new position command is generated to the slave robot which will usually set up a limit

cycle oscillation. It is completely fitting to low pass filter the force information throughout

the system to remove frequencies beyond the human bandwidth. Beyond that, the human

should experience the force as realistically as possible.

Computational hardware will eventually and probably very soon have the capability to

compute the complete dynamics of a slave manipulator to account for the entire mass content
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of the manipulator and its grasped object at rates which axe suitable for teleoperation. If

a very dynamically sound hand controller mechanism exists, then it will surely be useful

to provide the dynamics of the slave to the operator through the mechanism. Success will

depend upon the integrity of the hand controller.

3.2.2 Control Law Development

The control law for the hand controller relied upon an inner and outer control loop. The

inner loop comprised a current control loop around each of the actuators. This loop was

introduced basically to compensate for electrical dynamics of the actuators. The outer

attempted to compensate for the friction and mass content of the hand controller system.

The control schematic is shown in Figure 3.2.

The inner control loop was particularly easy to implement. A theoretical current was

calculated based upon Equation 2.25 and the electric motor characteristics. This current

command was fed as a voltage signal to a local current controller and amplifier package

supplied by Inland Motor. The controller implemented a proportional, plus derivative, plus

integral (PID) control law on the current. The bandwidth of the controller and motor

combination is in the kilohertz range. The control module provides a port for an externally

mounted current limiting resistor. This can be used in addition to software clamps to

provide a measure of safety against the high force generating capability.

The outer control loop was based initially upon a proportional plus derivative (PD)

control action acting upon the error in force and torque measured at the handgrip. This

approach was adopted from a "seat of the pants" viewpoint as opposed to rigorous mathe-

matical analysis, fundamentally because of the large amount of labor involved in the analysis

and the questionable worth in this highly nonlinear system. The proportional action was

included for basic accuracy, while the derivative action was included to encourage high dy.

namic response. A menu was set up on the host computer to allow individual gains to be

easily downloaded during system test for what was to be an empirical search for suitable

g_ns.
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Chapter 4

System Testing

This chapter documents the system testing. System testing basically proceeded in two

phases. The first phase included tests of the hand controller as an isolated system element.

The second phase comprised an integrated test of the hand controller with a slave robot

equipped with a force cell in the end effector as a full up, man in the loop demonstration.

The test phases are discussed separately in the following.

4.1 Hand Controller Subsystem Testing

The subsystem testing comprised assembly and testing of the individual components, qual-

itative or empirical testing of the hand controller subsystem against simulated slave loads

with a human in the loop, and more rigorous testing of the subsystem with a test fixture

to obtain quantitative data on system performance. Much of the mechanical testing was

described in the previous chapter.

4.1.1 Actuator Testing

The electric motors were assembled into their housings and bench tested as a subsystem.

Two great concerns exist with the assembly: axial alignment and axial preload. The axial

alignment was checked with a set of specially fabricated alignment and torquing tools. The

fundamental alignment was set with the tool. Extreme care and intuition then had to be

used in the subsequent preloading of the motor bearings. Several brushes were destroyed

during the assembly phase before the assembly technique was well developed.

.The bearing preloading proceeded by starting from the initial alignment provided with

the jig. The bearings were then loosened on their retaining collars by alternately backing

the screws by identical amounts on each end of the motor housing. This proceeded until
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the motor "felt" good. Individual screws were sometimes found loose on the retaining ring.

Subsequently all screws were set with flexible gasket cement to retain their position.

All motor assemblies were bench tested for starting current. The individual motors were

tested at the factory and found to have a staring current of approximately 0.23 Amp. All

six actuator assemblies were capable of being tuned down to this level of starting current.

A higher starting current was expected reflecting the bearing friction.

After actuator testing, the complete leg subsystems were assembled and tested. Testing

involved cycling the legs under sinusoidal position control. It was during this testing that

the interference between the upper turning shaft and the upper leg antirotation slot was

noticed. The system generated large amplitude vibrations as the turning shaft passed over

high spots on the upper leg and the upper leg wall deflected under the load. As previously

mentioned, the correction involved reducing the diameter of the turning shaft at the price

of some upper leg rotation. A better correction would be to locally stiffen the tube wall

before machining to allow for a better machining operation and to provide a stiffer final

product. Some warming of the motors was noticed in the high duty cycle oscillatory tests.

The leg assemblies display some undesirable lateral wobble at near full extension. This

wobble arises primarily from the deflection of the upper leg wall with side loads. When held

horizontally, gravity generates a significant side load against the leg assembly. The wobble

also comes from the intentionally loose running fit of the upper leg in the teflon bushing.

This condition can best be corrected by a stiffer wall section of the upper leg. Honeycomb

may be worth investigating for this condition.

The friction of the individual legs was measured with a hand held force gage. High

friction forces naturally are noticed with higher preload tension in the drive wire since the

radial forces in the motor shaft and upper turning bearing increase with the preload. The leg

friction forces measured with the manual force gage with the cable preload as adjusted for

the final system testing are presented in Table 4.1. The forces are given for three positions,

at approximately full extension, center, and full retraction. The forces were also measured

in both directions, labeled "Out" and "In," for extension and retraction respectively.

The friction levels are disappointingly high. Extrapolation of the starting current of the

isolated actuators, with the DC torque constant and the working radius of the cable take

off, shows a friction force associated with the actuator only of:

N °cll, t2
t,__mo,ors) x 0.23 r___me) x 0.325 A,np.,notor _ 0.30 N = 0.66 Ibf

.Tt__rietion = 0.5 cm
(4.1)

Comparison with the measured force data with the manual force gage suggests that the

contribution of the magnetic friction of the motor assembly to the entire leg friction is 40%

to 50%. Starting current measurements of the leg assembly would provide a better base of

comparison to identify the source of the system friction.
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Leg- Position

Leg 1 Extended

Friction Force

In

Leg

Friction Force

Out

(N)

0.59

(N)

0.64.

Leg 1 - Center 0.36 0.59
1 - Retracted 0.50 0.50

Leg 2 - ,,,Extended
Leg 2 - Center

0.61

Leg.2 - Retracted

0.48

0.57

0.55Leg. 3 Extended

Leg.

0.66

0.50

0.59

0.59

Leg 3 - Center 0.61 0.45

3 - Retracted 0.61 0.61

Average
Force

(N)

0.53

0.57

0.57

Average

Force

(Ibf)

1.17

1.25

1.26

Leg 4 - Extended 0.57 0.55

Leg 4 - Center ............0.52 0.61 0.58 1.28

Leg 4 - Retracted 0.61 0.64

Leg 5 - Extended 0.70 0.61

Leg 5 - Center 0.45 0.57 0.61 1.33

Leg 5 - Retracted 0.68 0.61

Leg 6- Extended 0.59 0.64

Leg 6 - Center 0.45 0.52 0.55 1.22

Leg 6 - Retracted 0.55 0.67

Table 4.h Leg Friction by Direct Measurement
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4.1.2 Empirical Subsystem Testing

Afterthe individuallegtests,the hand controllersubsystem was assembled forpreliminary

integratedtesting.The outer loop gains were graduallyincreasedfrom zero to develop

a sense for the system behavior. Often instabilitywas encountered. The system clearly

demonstrated excessiveload generatingcapabilities.In some instances,the upper joint

standoffswere bent under largetorqueloads.

The cable drive system displayed significant defects during the subsystem testing. In

particular, the cable would slip on the motor shaft in conjunction with large magnitude,

unstable oscillations. The slippage would occur when the motor would drive very hard in one

direction leading to slack in the unloaded side of the cable. When the motor would suddenly

change directions, the shaft would slip due to the slack in the cable. This mechanism was

attenuated with higher cable preload at the expense of friction. The motor shafts originally

had a circular groove. The motor assemblies were disassembled and the shafts remachined

for a "V" groove in an attempt to bite into the cable to prevent slippage. This allowed a

significant reduction in preload, and a corresponding reduction of roughly 30

The current shaft is fabricated from hard tool steel. This choice was made for strength

and the need to press fit the motor rotors on the shaft. Visual inspection of the shaft shows

a "shiny" surface, perhaps as a result of slippage and subsequent polishing by the cable.

The cable is made from stainless steel. Steel on steel has a relatively high coefficient of

friction of 0.8, while solids on rubber have a value ranging from 1 to 4 [O1, pg.545- 546].

Some improvement might be made by impregnating the wire with rubber. However, this

must be done with caution due to the possibility of contaminating the brushes and the

likelihood that the solution lacks permanence.

Testing with a timing belt drive is higtdy recommended. The motor shafts could likely

be modified for a timing belt by bolting two split belt pulleys onto the current motor shaft.

An interface method for the timing belt with the leg would have to be designed. This

could most easily be done by developing a new bottom cap. The caps are set with a mild

epoxy which releases at elevated temperatures. The upper shaft would require a simple

modification to provide a centering groove for the belt. The system could be tensioned by

moving the turning shaft bearing collar axially on the lower leg.

4.1.3 Quantitative Subsystem Testing

Quantitative evaluation of the hand controller system was desired to verify the performance

of the Stewart Platform in the hand controller application, measure the system friction,

evaluate the effectiveness of the outer feedback control loop in enhancing the force feedback

fidelity, and measure the system execution time.
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Force Feedback Fidelity

In addition to providing the feedback transducer, the force and torque sensing cell was used

to measure the forces and torques at the handgrip during the system testing. The test

fixture featured as external frame with a linear slider bearing. The slider was aligned with

the V axis. The normal handgrip was removed from the force torque cell, and the slider

bearing was bolted in its place. This allowed the measurement of static forces in five DOF

and dynamic forces in one DOF. The test arrangement is shown in Figure 4.1.

The test procedures universally featured a finite step input command of force or torque
along one of the DOF with the command for all other freedoms held at zero. With the force

or torque command held constant at the step output level, the hand controller was then

driven by hand in the negative V direction, allowed to be stationary for a brief time, then

drawn outward in the positive V direction. Two outer loop gain values, P and D had to

be specified. The first value multiplied the error in force or torque in each of the six DOF.

The second value multiplied the first difference in force or torque error. Additionally, a

general force or torque scaling value had to be specified. As a backup stabilization method,

the capability to employ velocity damping based upon differentiation of the leg lengths was

also implemented. The testing proceeded by simply varying the gains and observing the

behavior until an optimum was discovered.

One of the first tests to be performed was to remove the feedforward term from the

control calculation. This term exactly implements Equation 2.25. The system was then

driven completely by the error sensed through the handgrip. The results were too poor to

justify recording. The system cannot be completely error driven. The feedforward

term must be implemented.

The optimum gain values were found to be P=0.5 and D=0.5. The system essentially

went unstable for any value of P above 0.5. Surprisingly, the D value contributed only

slightly to the speed of the response. In an attempt to generate very fast response, the

sign of the D term was changed to act as a damping agent to allow proportionately high

P values. This proved of little benefit. The position based damping also proved of little

benefit. The system apparently has a fundamental limit of P=0.5.

A reasonable course of investigation in explaining the stability limitation is that the

control law was requesting forces which the actuators simply could not produce. Separate

monitoring of the actuator commands indicated that the actuator torque limit was never

approached. To support this point, Figure 4.2 displays the voltage command to Leg 5 for a

step command of 10 lbf in the positive z direction. The ordinate represents coded numbers

which range from 0 to 4000, corresponding to -20 V and 20V respectively. As can be seen,

the control law never requested a voltage anywhere near the system maximum or saturation
value.

Proceeding in a different vein the stability limit could possibly result from the speed

of the processing. The D term should help to increase stability and enhance performance

61



I Z+

4

3

Y+

A linear bearing was mounted on a frame external to the hand controller
mechanism. The axis of the bearing was parallel to, but offset from the Y axis.
The bearing shaft tied into the face plate of the force cell at an offset in the -X
direction from the force cell center.

Figure 4.1: Quantitative Force Measuring Apparatus
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Figure4.2:Coded Command Historyin Leg 5 for I0Ibf in z

and isprobably being rendered ineffectiveby the computational limits.Classicalcontrol

thought warns againstnumerical differentiationto produce stabilizingfeedback,primarily

because ofnoise.In thiscasethe data input and output time may alsobe a limitingfactor.

The data from fourtestsare includedin totoforreferencein Appendix B. The results

includedata for the force/torquein allsixDOF as wellas the correspondingforcehistory

in the legs.Test A featuredno feedback and a forcecommand of 10 Ib[in the positivez

direction.Test B, featuredthe optimum gainspreviouslycitedand the same stepcommand.

Comparison of these resultswas intended in indicatethe overallworth of the outer loop.

For additionalcomparison,Tests C and D both featuredthe optimum gains,but had step

inputsof 10 lb.[inthe positivez directionand 5 in.lbfabout the positivey axisrespectively.

Figures4.3 and 4.4 which are repeated in thischaptershow the system responsealong

the z axisforTest A and Test B respectively.The solidllneindicatesthe command, while

the broken lineindicatesthe response. Both testsfeaturea time delay of approximately

0.1 sec.beforethe responseoccurs. The actualdelay willbe lessdue to the factthat the

command isrecordedatthe instantitisgiven,whereas time isrequiredtoread the response

and recordthe informationafterthe response has actuallyoccurred. The performance of

the Test A, the zero gain case,issuperiorhaving littleovershoot and bettersteady state

error.Figures4.5 and 4.6,alsorepeatedin thischapterindicatethe response inforcealong

the z axisforTestsA and B respectively.For thesegraphs,the solidlinesshow the forcein

x while the broken linesshow the relativemechanism positionin y, the ordinatefor y not
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being provided in the graph. The y position is plotted to provide a sense of the mechanism

dynamics at each instant of time. In this instance, Test B with the outer feedback loop

compensation is superior having less average steady state error and less peak to peak error.

Execution Timing

The computation cycle is described in Section 3.1.6. The cycle start corresponds to the

reading of the leg lengths. The test program read the system clock in the host PC at the

time the first set of leg lengths was read. The system then executed continuously without

interruption. In conjunction with the 4,000th reading of the leg lengths, the system clock

was again read. The elapsed time divided by the number of cycles yielded the execution

rate. The system achieved a complete cycle frequency of 83 ttz.

4.2 Integrated System Test

The program plan called for integrating the system with a slave robot to demonstrate com-

plete system capability. To this end, the hand controller was integrated with a General

Electric P60 robot equipped with a Lord force/torque measuring cell in its handgrip. The

integration took place at the Center for Intelligent Machines and Robotics at the University

of Florida. Program resources did not allow for any quantitative testing with the integrated

system. Successful demonstration of position feedforward and force feedback was demon-

strated in six DOF. Additionally, the system was integrated with a real time solid model

computer display of the slave robot to include force histograms and a vector display of the

force and torque developed at the slave end effector.
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Chapter 5

Conclusions and

Recommendations

This research program embraced the thesis that a superior force reflecting hand controller

could be constructed from the Stewart Platform mechanism. The program provided a

means to perform basic research on the Stewart Platform and also to investigate advanced

concepts in the development of force reflecting hand controllers, namely the implementation

of a friction and inertia cancelling control loop about the entire mechanism based upon force

and torque sensing in the mechanism handgrip.

5.1 Conclusions

During this research program, the following results and conclusions were developed:

Mechanisms Design Rules A set of design rules for the Stewart Platform mechanism

were developed and documented.

Mechanism Performance Capabilities Theoretical limitations on the range of motion

of the Stewart Platform mechanism were established. In particular a mathematical

limitation of 90 degrees pure rotation from center was established. Because of me-

chanical limitations, realistic systems can expect perhaps 60 degrees rotation from
center.

Hand Controller Kinematic Design A force reflecting hand controller kinematic design

was developed based upon the Stewart Platform mechanism. The design featured the

capability to move within a 25 cm cube, and rotate +/- 45 degrees about any axis

intersecting that cube.
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Mechanical Design A detailed mechanical design of the concept based upon the kine-

matic design was developed and executed. The system had a theoretical capability

to generate 7.45 N (16 lbf) of force anywhere in the workspace at the worst case

orientation, with a maximum of 31.75 N (70 Ibf) in the most favorable position and
orientation.

Controller A computer and control architecture for the system was developed and exe-

cuted. The architecture was based upon distributed parallel processing using three

i860 processors. The system featured a bilateral control update rate of 83Hz.

Hand Controller Testing The hand controller subsystem was tested with the following
salient results:

• The hand controller subsystem is basically functional. It can produce large forces

and torques against the human operator while the operator executes positioning
motions.

• The cable drive system needs improvement due to cable slippage on the motor
shaft.

• The usefulness of the force and torque cell in the handgrip is not conclusive. In

some instances it improves accuracy and force feedback fidelity while in others

it introduces instability.

Integrated System Testing The hand controller system was integrated with a GE P60

slave robot equipped with a force and torque sensing cell in its handgrip. Bilateral

control of the integrated system was demonstrated.

5.2 Recommendations

Based upon the above, the following research recommendations are set forward:

Timing Belt Drive The mechanical system can be readily reconfigured with a timing belt

drive in anticipation of relieving the cable slippage problem and potentially reducing

friction with associated drop in preload. This change and subsequent testing is highly
recommended.

Active Friction Attenuation The friction of the mechanism was dissapointingly high.

It may be possible to feed forward a compensating current of roughly 0.2 Amp to aid

in breaking the friction. The direction of the current would have to be based upon

force feedback from the force cell in anticipation of the operator's intended motion.

Alternative Force Sensing The current force cell is massive, expensive and awkward.

It should be possible to mount force sensing devices (strain gages or piezo-electric)

dements between the upper joints and the handgrip to sense directly the force output

of each leg upon the handgrip.
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Outer Feedback Loop More development isrequiredbeforedefinitiveconclusionscan be

reached regardingusefulnessof the outer feedback loop. Some insightsintothe sta-

bilitylimitationswere mentioned. More carefulanalysisand testingisrecommended.
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Y

(era)

12.7

10.16

7.62

5.08

2.54

0

-2.54

-5.08

-7.62

-10.16

-12.7

Units - Dimensionless

1.57 1.53 1.50 1.47 1.45 1.42 1.39 1.37 1.34 1.32 1.29

1.58 1.54 1.50 1.47 1.43 1.41 1.38 1.35 1.33 1.30 1.28

1.59 1.55 1.51 1.48 1.45 1.42 1.39 1.36 1.34 1.31 1.29

1.62 1.57 1.53 1.49 1.46 1.43 1.40 1.38 1.35 1.33 1.33

1.64 1.59 1.55 1.51 1.48 1.45 1.42 1.39 1.37 1.37 1.39

1.68 1.62 1.58 1.54 1.50 1.47 1.44 1.42 1.42 1.44 1.46

1.72 1.66 1.61 1.57 1.53 1.50 1.47 1.47 1.49 1.52 1.54

1.76 1.70 1.65"- 1.60 1.56 1.52 1.54 1.57 1.59 i16i 1.64

1.82 1.75 1.69 1.64 1.60 1.62 1.65 1.68 1.71 1.74 1.76

1.89 1.81 1.74 1.69 1.73 1.76 1.79 1.82 1.85 1.89 1.92

1.97 1.88 1.81 1.85 1.89 1.93 1.96 2.00 2.04 2.08 2.13

-12.71-10.16 [-7.621-5.081-2.54 [ 0 12.54J5.o817.621 lO.161 12.7

X (era)

Table A.I: Maximum of _ vs. Position in X-Y

Y

(cm)

12.7

10.16

7.62

5.08

2.54

0

-2.54

-5.08

-7.62

-lO.16

-12.7

Units - Dimensionless

-0.83 -0.82 -0.82 -0.82 -0.83 -0.83 -0.83 -0.84 -0.84 -0.85 -0.86

-0.79 -0.79 -0.79 -0.79 -0.79 -0.79 -0.79 -0.80 -0.80 -0.81 -0.88

-0.78 -0.78 -0.78 -0.78 -0.77 -0.77 -0.77 -0.77 -0.78 -0.85 -0.93

-0.77 -0.77 -0.76 -0.76 -0.76 -0.75 -0.75 -0.75 -0.82 -0.89 -0.98

-0-77 -0.76 -0.76 -0.75 -0.75 -0.74 -0.74 -0.78 -0.85 -0.93 -1.03

°0.77 -0.76 -0.75 -0.75 -0.74 -0.73 -0.74 -0.80 --0.88 -0.97 -1.08

-0.79 -0.78 -0.77 -0.76 -0.76 -0.75 -0.75 -0.82 -0.91 -1.01 -1.13

-0.89 -0.88 -0.87 -0.87 -0.86 -0.85 -0.85 -0.85 -0.93 -1.04 -1.17

-i.Ol -i.00 -0.99 -0.99 -0.98 -0.98 -0.97 -0.97 -0.97 -i.07 -1.22

-1.16 -1.15 -1.14 -1.14 -1.13 -1.13 -1.12 -1.12 -1.13 -1.13 -1.26

-1.34 1.33 -I.:33 -1.32 -1.32 -1.32 -1.32 -1.32 -1.32 -1.33 -1.33

-12.71-10.161-7.62 ] -5.08 ] -2.54 I 0 I 2.54 J 5.08 I 7.62 I 10.16] 1217

X (era)

Table A.2: Minimum of _'_ vs Position in X-Y
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Y

(era)

12.7

10.16

7.62

5.08

2.54

0

-2.54

-5.08

-7.62

-10.16

-12.7

Units - Dimensionless

1.71 1.48 1.29 1.18 1.25 1.35 1.47 1.60

1.59 1.40 1.24 1.19 1.23 1.32 1.44 1.56

1.51 1.34 1.24 1.20 1.20 1.30 1.40 1.53

1.43 1.31 1.26 1.21 1'.18 1.27 1.37 1.49

1.39 1.33 1.28 1.23 1.18 1.24 1.34 1.46

1.42 1.35 1.30 1.24 1.19 1.22 1.32 1.43

1.48 1.39 1.32 1.26 1.20 1.19 1.29 1.40

1.53 ]..43 1.34 1.27 1.21 1.17 1.26 1.37

1.60 1.48 1.38 1.29 1.22 1.16 1.24 1.34

1.75 1.61 1.48 1.37 1.27 1.18 1.19 1.28

x271 10.1617.6215081 2.5410 125415081
X(cm)

1.75 1.92 2.13

1.71 1.88 2.08

1.67 1.84 2.04

1.64 1.80 2.00

1.60 1.77 1.96

1.57 1.73 1.93

1.53 1.69 1.89

1.50 1.66 1.85

1.47 1.62 1.81

1.43 1.59 1.78

1.40 1.55 1.74

7.62110.16112.7

Table A.3: Maximum of _ vs Position in X-Y

Y

(cm)

12.7

10.16

7.62

5.08

2.54

0

-2.54

-5.08

-7.62

-10.16

-12.7

Units - Dimensionless

-1.30 -1.13 -0.99'-0_!_3:0.96 -1.00 -1.04

-1.13 -1.00 -0.89 -0.89 -0.92 -0.96 -1.00

-1.00 -0.90 -0.83 -0.85 -0.88 -0.92 -0.96

-0.88 -0.85 -0.83 -0.82 -0.85 -0.88 -0.93

-0.87 -0.85 -0.82 -0.80 -0.82 -0.85 -0.89

-0:87 -0.84 -0.82 -0.79 -0.79 -0.83 -0.87

-0.86 -0.84 -0.81 -0.79 -0.78 -0.81 -0.85

-0.86 -0.83 -0.81 -0.78 -0.76 -0.80 -0.84

-0.86 -0.83 -0.81 -0.78 -0.76 -0.79 -0.83

-0.85 -0.83 -0.80 -0.78T-0.76. __ ]-0.78 -0.82-0.85 -0.83 -0.80 -0.781-0.76 -0.77 -0.81
-12.71-10.16[-7.621-5.081-2.54[ 0 I 2.54

X (cm)

-1.08 -1.13 -1.19 -1.33

-1.04 -1.09 -1.17 -1.33

-1.00 -1.06 -1.16 -1.32

-0.97 -1.02 -1.15 -1.32

-0.94 -1.01 -1.15 -1.32

-0.92 -1.00 -1.15 -1.32

-0.90 -1.00 -1.15 -1.32

-0.89 -1.00 -1.14 -1.32

-0.88 -0.99 -1.15 -1.33

-0.87 -0.99 -1.15 -1.33

-0.86 -1.00 -1.15 -1.34

5.08I 7-6211°.16112.7

Table A.4: Minimum of 9vv vs Position in X-Y
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Y
(cm)

12.7

10.16

7.62

5.08

2.54

0

-2.54

-5.08

-7.62

-10.16

-12.7

Units - Dimensionless

2.13 1.92 1.76 1.64 1.54 1.46 1.39

1.92 1.76 1.63 1.53 1.44 1.37 1.31

1.75 1.62 1.51 1.43 1.36 1.30 1.25

1.60 1.49 1.41 1.34 1.28 1.23 1.18

1.47 1.38 1.31 1.26 1.21 1.16 1.13

1.35 1.29 1.23 1.18 1.15 1.15 1.15

1.29 1.26 1.24 1.22 1.22 1.21 1.21

1.42 1.38 1.35 1.33 1.30 1.29 1.28

1.57 1.53 1.48 1.45 1.42 1.40 1.38

1.75 1.69 1.64 1.59 1.56 1.53 1.50

1.97 1.89 1.82 1.76 1.72 1.68 1.64

-12.71-1o.161-7.621-5.o81-2.541 o 12.54
X (cm)

1.33 1.28 1.24 1.27

1.26 1.22 1.20 1.23

1.20 1.17 1.18 1.21

1.15 1.13 1.15 1.18

1.10 1.11 1.13 1.16

1.15 1.16 1.17 1.18

1.22 1.22 1.23 1.24

1.29 1.29 1.30 1.31

1.37 1.37 1.37 1.39

1.48 1.47 1.46 1.47

1.62 1.59 1.58 1.57

15.o817.6211o.16112.7

Table A.5: Maximum of Y', vs Position in X-Y

Y

(cm)

12.7

10.16

7.62

5.08

2.54

0

-2.54

-5.08

-7.62

-I0.16

-12.7

Units- Dimensionless

-1.34 -1.16 -1.01 -0.90 -0.82 -0.75 -0.69 -0.67 -0.68 -0.69 -0.70

-1.19 -1.06 -0.96 -0.87 -0.80 -0.73 -0.68 -0.67 -0.68 -0.69 -0.72

-1.13 -1.02 -0.93 -0.85 -0.78 -0.72 -0.67 -0.68 -0.68 :0.70 -0.73

-1.08 -0.98 -0.90 -0.82 -0.76 -0.71 -0.67 -0.68 -0.69 -0.72 -0.74

-1.04 -0.95 -0.87 -0.81 -0.75 -0.70 -0.68 -0.68 -0.71 -0.73 -0.76

-1.00 -0.92 -0.85 -0.79 -0.74 -0.71 -0.68 -0.70 -0.72 -0.75 -0.77

-0.96 -0.89 -0.83 -0180 -0.77 -0.74 "-0.71 -0.72 -0.74 -0.76 -0.79
| *

-0.93 -0.90 -0.87 -0.84 -0.82 -0.79 -0.76 -0.74 -0.76 -0.78 -0.81

-0.99 -0.96 -0.92 -0.90 -0.87 -0.84 -0.81 -0.78 -0.78 -0.80 -0.82

-1.13 -1.09 -1.05 -1.01 -0.97 -0.93 -0.89 -0.84 -0.80 -0.81 -0.84

-1.30 -1.26 -1.22 -1.17 -1.13 -1.08 -1.03 -0.98 -0.93 -0.88 -0.86
H

-12.71-10.161-7.621-5.081-2.541 0 I 2.54I 5.08I 7.62110.1611'2.7
X (cm)

Table A.6: Minimum of ._', vs Position in X-Y
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Y

(cm)

12.7

10.16

7.62

5.08

2.54

0

-2.54

-5.08

-7.62

-I0.16

-12.7

Units - Reciprocal Centimeter

0.20 0.18 0.17 0.17 0.17

0.18 01]6 0.16 0.16 0.16

0.16 0.15 0.15 0.16 0.16

0.15 0.14 0.15 0.15 0.16

0.14 0.14 0.14 0.15 0.15

0.14 0.14 0.14 0.14 0.15

0.15 0.14 0.i4 0.14 0.15

0.16 0.16 0.15 0.15 0.14

0.18 0.17 0.17 0.16 0.'16

0.20 0.19 0.18 0.18 0.17

0.22 0.21 0.21 0.20 0.19

-12.71-10.161-7.621-5.081-2.541

0.17

0.17

0.17

0.16

0.16

0.15

0.15

0.15

0.15

0.17

0.19

0

X(cm)

0.18 0.19 0.20 0.21 0.22

0.18 0.18 0.19 0.20 0.22

0.17 0.18 0.19 0.20 0.21

0.17 0.17 0.18 01i9 0.21

0.16 0.17 0.18 0.19 0.20

0.16 0.17 0.18 0.19 0.20

0.16 0.16 0.17 0.'18 0.20

0.15 0.16 0.17 0.18 0.19

of5 016 017 018 019
0.16 0.16 0.16 018 0.19
0.18 0.17 0.17 0.17 0.19

12.5415.o817.6211o.16112.7

Table A.7: Maximum of Tx vs Position in X-Y

Y

(cm)

12.7

10.16

7.62

5.08

2.54

0

-2.54

-5.08

-7.62

-10.16

-12.7

Units - Reciprocal Centimeter

-0.22 -0".19 -0.18 -0.16 -0.17 -0.17 -0.18 -0.19 -0.20 -0.21 -0.22

-0.19 -0.18 -0.16 -0.16 -0.16 -0.17 -0.17 -0.18 -0.19 -0.20 -0.22

-0.17 -0.16 -0.15 -0.15 -0.16 -0.16 -0.17 -0.18 -0.19 -0.20 -0.21

-0.16 -0.15 -0.14 -0.15 -0.15 -0.16 -0.16 -0.17 -0.18 -0.19 -0.21

-0.15 -0.14 -0.14 -0.14 -0.15 -0.15 -0.16 -0.17 -0.18 -0.19 -0.21

-0.14 -0.13 -0.14 -0.14 -0.14 -0.15 -0.16 -0.17 -0.18 -0.19 -0.20

-0.14 -0.14 -0.14 -0.14 -0.14 -0.15 -0.15 -0.16 -0.17 -0.18 -0.20

-0.16 -0.15 -0.15 -0.15 -0.14 -0.14 -0.15 -0.16 -0.17 -0.18 -0.20

-0.17 -0.17 -0.16 -0.16 -0.16 -0.15 -0.15 -0.16 -0.17 -0.18 -0.20

-0.20 -0.19 -0.18 -0.18 -0.17 -0.17 -0.16 -0.16 -0.17 -0.18 -0.19

-0.22 -0.22 -0.21 -0.20 -0.19 -0.19 -0.18 -0.18 -0.17 -0.18 -0.19

-12.7[-10.161-7.621-5.081-2.541 0 [ 2.54 [ 5.08 [ 7.62 [10.16 I 12.7

x (cm)

Table A.8: Minimum of T. vs Position in X-Y
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Y

(era)

12.7

10.16

7.62

5.08

2.54

0

-2.54

-5.08

-7.62

-10.16

-12.7

Units - Reciprocal Centimeter

0.20 0.18 .... 0.17 0.17 0.1"7..... 0.17 0.18 0.19 0.20 0.21 0.22

0.18 0.16 0.16 0.16 0.16 0.17 0.18 0.18 0.19 0.20 0.22

0.16 0.15 0.15 0.16 0.16 0.1'7 0.17 0.18 0.19 0.20 0.21

0.15 0.14 0.15 0.15 0.16 0.16 0.17 0.17 0.18 0.19 0.21

0.14 0.14 0.14 0.15 0.15 0.16 0.16 0.17 0.18 0119 0.20

0.14 0.14 (LI4 0.14 0.15 0.15 0.16 0.17 0.18 0.19 0.20

0.15 0.14 0.14 0.14 0.15 0.15 0.16 0.16 0.17 0.18 0.20

0.16 0.16 0.15 0.15 0.14 0.15 0.15 0.16 0.17 0.18 0.19

0.18 0.17 0.17 0.16 0.16 0.15 0.15 0.16 0.17 0.18 0.19

0.20 0.19 0.18 0.18 0.17 0.17 0.16 0.16 0.16 0.18 0.19

0.22 0.21 0.21 0.20 0.19 0.19 0.18 0.17 0.17 0.17 0.19

-12.71-1o.161-7.621-5.o81-2.541 o 12.5415.0817.62110.16112.7
X (cm)

Table A.9: Maximum of T_ vs Position in X-Y

Y

(cm)

12.7

10.16

7.62

5.08

2.54

0

-2.54

-5.08

-7.62

-I0.16

-12.7

-0.22

-0.19

-0.17

-0.16

-0.15

-0.14

-0.14

-0.16

-0.17

-0.20

-0.22

Units - Reciprocal Centimeter

-0.19 -0.18 -0.16 -0.17 -0.17 -0.18 -0.19 -0.20

-0.18 -0.16 -0.16 -0.16 -0.17 -0.17 -0.18 -0.19

_b116 -0.15 -0.15 -0.16 -0.16 -0.17 -0.18 -0.19

-0.15 -0.14 -0.15 -0.15 -0.16 -0.16 -0.17 -0.18

-0.14 -0.14 -0.14 -0.15 -0.15 -0.16 -0.17 -0.18

-0.13 -0.14 -0.14 '-0.14 -0.15 -0.16 -0.17 -0.18

-0.14 -0.14 -0.14 -0.14 -0.15 -0.15 -0.16 -0.17

-0.15 -0.15 -0.15 -0.14 -0.14 -0.15 -0.16 -0.1_;

-0.17 -0.16 -0.16 -0.16 -0.15 -0.15 -0.16 -0.17

-0.19 -0.18 -0.18 -0.17 -0.17 -0.16 -0.16 -0.17

-0.22 -0.21 -0.20 -0.19 -0.19 -0.18 -0.18 -0.17

-12.71-10.161-7.621-5.081-2.54 I o I 2.54 I 5.08
X (cm)

-0.21 -0.22

-0.20 -0.22

-0.20 -0.21

-0.19 -0.21

-o.19 -o.2i
-0.19 -0.20

-0.18 -0.20

-0.18 -0.20

-0.18 -0.20

-0.18 -0.19

-0.18 -0.19

I 7.62i10.16112.7

Table A.10: Minimum of T_ vs Position in X-Y
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Y

(era)

12.7

10.16

7.62

5.08

2.54

0

-2.54

-5.08

-7.62

-10.16

-12.7

Units - Reciprocal Centimeter

0.20 0.i8 0.17 0.17 0.17 0.17 0.18 0.19 0.20 0.21 0.22

0.18 0.16 0.16 0.16 0.16 0.17 0.18 0.18 0.19 0.20 0122

0.16 0.15 0.15 0.16 0.16 0.17 0.17 0.18 0.19 0.20 0.21

0.15 0.14 0.15 0.15 0.16 0.16 0.17 0.17 0.18 0.19 0.21

0.14 0.14 0.14 0.15 0.15 0.16 0.16 0.17 0.18 0.19 0.20

0.14 0.14 0.i4 0.14 .....0_i5" 0.15 0.16 0.17 0.18 0.19 0.20

0.15 0.14 0.14 0.14 0.15 0.15 0.16 0.16 0.17 0.18 0.20

0.16 0.16 0.15 0.15 0.14 0.15 0.15 0.16 0.17 0.18 0_19

0.18 0.17 0.if 0.16 0.16 0.15 0.15 0.16 0.17 0.18 0.19

0.20 0.19 0.18 0.18 0.17 0.17 0.16 0.16 0.16 0.18 0.19

0.22 0.21 0.21 0.20 0.19 0.19 0.18 0.17 0.17 0.17 0.19

-12.71-1o.16t-7.621-5.o81-2.541 o 12.5415.o.817.62110.16112.7
X (em)

Table A.11: Maximum of T_ vs Position in X-Y

Y

(cm)

12.7

10.16

7.62

5.08

2.54

0

-2.54

-5.08

-7.62

-10.16

Units - Reciprocal Centimeter

-0.22 -0.19 -0.18 -0.16 -0.17 -0.17 -0.18 -0.19 -0.20

-0.19 -0.18 -0_i6 -0.16 -0.16 -0.17 -0.17 -0.18 -0.19

-0.17 -0.16 -0.15 -0.15 -0.16 -0.16 -0.17 -0.18 -0.19

-0.16 -0.15 -0.14 -0.15 -0.15 -0.16 -0.16 -0.17 -0.18

-0.15 -0.14 -0.14 -0.14 ....._0.15 -0.15 -0.16 -0.17 -0.18

-0.14 -0.13 -0.14 -0.14 -0.14 -0.15 -0.16 -0.17 -0.18

-0.14 -0.14 -0.14 -0.14 -0.14 -0.15 -0.15 -0.16 -0.17

-0.16' -0.15 -0.15 -0.15 -0.14 -0.14 -0.15 -0.16 -0.17

-0.17 -0.17 -0.16 -0.16 -0.16 -0.15 -0.15 -0.16 -0.17

-0.20 -0.19 --0118 -0.18 -0.17 -0.17 -0.16 -0.16 -0.17

-0.22 -0.22 -0.21 -0_20 -0.19 -0.19 -0.18 -0.18 -0.17

-12.71-10.161-7.621-5.081-2.54I 0 I 2.54I 5.08I 7.62
X (cm)

-0.21 -0.22

-0.20 -0.22

-0.20 -0.21

-0.19 -0.21

-0.19 -0.21

-0.19 -0.20

-0.18 -0.20
k, ,,

-0.18 -0.20

-0.18 -0.20

-0.18 -0.19

-0.18 -0.19

1i0.16[ 12.7

Table A.12: Minimum of _ vs Position in X-Y
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Y

(cm)

12.7

10.16

7.62

5.08

2.54

0

-2.54

-5.08

-7.62

-10.16

-12.7

96.4

95.9

95.5
95.2

95.0

94.8

95.0

95.2

95.5

95.9

96.4

-12.7

96.1 95.8

95.6 95.4 95.2 95.1 95.1 95.1 95.2 95.4 95.6

95.2 95.0 94.8 94.7 94.7 94.7 94.8 95.0 95.2

94.9 94.7 94.5 94.4 94.4 94.4 94.5 94.7 94.9

94.7 94.4 94.3 94.2 94.1 94.2 94.3 94.4 94.7

94.5 94.2 94.1 94.0 93.9 94.0 94.1 94.2 94.5

94.7 94.4 94.3 94.2 94.1 9412"94.3 94.4 94.7

94.9 94.7 94.5 94.4 94.4 94.4 94.5 94.7 94.9

95.2 95.0 94.8 94.7 94.7 94.7 94.8 95.0 95.2

95.6 95.4 95.2 95.1 95.1 95.1 95.2 95.4 95.6
961 95:8 957 956 955 956 957 958 961

I- o.,61-7.621-5.os1.:2. 41o 12.541s.oslT.6211o. 6
X (era)

Units - Centimeter

95.7 95.6 95.5 95.6 95.7 95.8 96.1 96.4

96.1

95.8

95.7

95.6

95.5

95.6

95.7

95.8

96.1

96.4

112.7

Table A.13: Maximum of O vs Position in X-Y

Y

(cm)

12.7

10.16

7.62

5.08

2.54

0

-2.54

-5.08

-7.62

-10.16

-12.7

Units - Centimeter

61.0 60.6 60.2 60.0 59.8 59.7 59.8

60.6 60.2 59.9 59.6 59.5 59.4 59.5

60.2 60.0 59.6 59.4 59.2 5'9.2 59.2

6010 59.9 59.5 59.3 59.1 59.1 59.1

59.8 59.8 59.5 59.3 59.1 59.1 59.1

59.7 59.9 59.6 59.4 59.2 59.2 59.2

59.8 59.8 59.5 59.3 59.1 59.i 59.1

60.0 59.9 59.5 59.3 59.1 59.1 59.1

60.2 60.0 59.6 59.4 59.2 59.2 59.2

60.6 60.2 59.9 59-.6 59.5 59.4 59.5

61.0 60.6 60.2 60.0 59.8 59.7 59.8

-12.71-10.161-7.621-5.081-2.541 0 12.54
X (cm)

w.

60.0 60.2 60.6 61.1

59.6 59.9 60.3 60.8

59.4 59.7 60.1 60.5

59.3 59.6 59.9 60.4

59.3 59.6 59.9 60.4

59.4 59.6 59.9 60.4

59.3 59.6 59.9 60.3

59.3 59.6 59.9 60.3

59.4 59.7 60.1 60.5

59.6 59.9 60.3 60.7

60.0 60.2 60.6 61.0

5.o817.6211o.16112.7

Table A.14: Minimum of 0 vs Position in X-Y
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Appendix B

Quantitative Test Results
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80



a=

(g
rJ
L
0

r_

2O

t5

tO

5

-5

-tO

-t5

-20
0

t •

! i

.......... _ .............................. _ ............ _ ............................................ _ .....

]
I
1

I !

....................................L:.................. I ...............................1.............................................................

t t

i
I I i

i , i
i

; ! I
i ' i
2 3 4 5

Time [lec.]

Figure B.3: Test A. - Force Response in z

2o

15

..= 10

O

5

O
eL.

,-_ 0

=_

LI

u -tO
G

[--

-15

-20
o

u

i ................ L .......

............... |............. -_ ................................................................_.................... _..................

i ! 1 '
I I

l 2 3 4 5 6

Time [sec.]

FigureB.4: Test A - Torque Response in z

81



°_

¢

0

.a

(g

-1o
O

[..

2oj I I I
• i i !

I I ! : ! i

-].5

-20
0

5 ........... ......... i ........................... ....

01 : _"-'. ............ ..L.-'::='_ _................. i ......
1
I

; t

1r

' i 4............... , ........................... +....................................................................................................................

: i
, I l
t 2 3 4 5 6

Time [aec.]

Figure B.5: Test A - Torque Response in Y

20
1

I

15 ................................... : ........

.H io

@

5
@

,_ 0

j_

0"

"- -10
0

[...,

-15

-20
0

iI
l

, i

' ! i )
i ................................... i.1

i i •

; i

' i i t

1 2 3 4 5 6

Time [flec.]

Figure B.6: Test A - Torque Response in z
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Figure B.10: Test A - Leg 4 Force History
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Figure B.12: Test A - Leg 6 Force History
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Figure B.21: Test B - Leg 3 Force History
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Figure B.22: Test B - Leg 4 Force History
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Figure B.23: Test B - Leg 5 Force History
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Figure B.24: Test B - Leg 6 Force History
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Figure B.36: Test C - Leg 6 Force History
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Figure B.37: Test D - Force Response in =
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Figure B.38: Test D -Force Response in I/
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Figure B.40: Test D - Torque Response in z
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Figure B.43: Test D - Leg 1 Force History
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Figure B.44: Test D - Leg 2 Force History
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Figure B.46: Test D - Leg 4 Force History
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Figure B.47: Test D - Leg 5 Force History
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Figure B.48: Test D - Leg 6 Force History
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